Suppr超能文献

一种适用于多处理和聚类生存结局的因果推断的灵活方法。

A flexible approach for causal inference with multiple treatments and clustered survival outcomes.

机构信息

Department of Biostatistics and Epidemiology, Rutgers University, Piscataway, New Jersey, USA.

Department of Radiation Oncology, Cancer Institute of New Jersey of Rutgers University, New Brunswick, New Jersey, USA.

出版信息

Stat Med. 2022 Nov 10;41(25):4982-4999. doi: 10.1002/sim.9548. Epub 2022 Aug 10.

Abstract

When drawing causal inferences about the effects of multiple treatments on clustered survival outcomes using observational data, we need to address implications of the multilevel data structure, multiple treatments, censoring, and unmeasured confounding for causal analyses. Few off-the-shelf causal inference tools are available to simultaneously tackle these issues. We develop a flexible random-intercept accelerated failure time model, in which we use Bayesian additive regression trees to capture arbitrarily complex relationships between censored survival times and pre-treatment covariates and use the random intercepts to capture cluster-specific main effects. We develop an efficient Markov chain Monte Carlo algorithm to draw posterior inferences about the population survival effects of multiple treatments and examine the variability in cluster-level effects. We further propose an interpretable sensitivity analysis approach to evaluate the sensitivity of drawn causal inferences about treatment effect to the potential magnitude of departure from the causal assumption of no unmeasured confounding. Expansive simulations empirically validate and demonstrate good practical operating characteristics of our proposed methods. Applying the proposed methods to a dataset on older high-risk localized prostate cancer patients drawn from the National Cancer Database, we evaluate the comparative effects of three treatment approaches on patient survival, and assess the ramifications of potential unmeasured confounding. The methods developed in this work are readily available in the package .

摘要

当使用观察性数据对聚类生存结局的多种治疗效果进行因果推断时,我们需要解决多层次数据结构、多种治疗、删失和未测量混杂对因果分析的影响。很少有现成的因果推理工具可以同时解决这些问题。我们开发了一种灵活的随机截距加速失效时间模型,其中我们使用贝叶斯加性回归树来捕捉删失生存时间和预处理协变量之间任意复杂的关系,并使用随机截距来捕捉特定于聚类的主要效应。我们开发了一种有效的马尔可夫链蒙特卡罗算法,以对多种治疗的总体生存效果进行后验推断,并检查聚类水平效果的可变性。我们进一步提出了一种可解释的敏感性分析方法,以评估对未测量混杂因果假设的偏离程度对治疗效果因果推断的敏感性。广泛的模拟经验验证并证明了我们提出的方法具有良好的实际操作特性。将所提出的方法应用于从国家癌症数据库中抽取的老年高危局限性前列腺癌患者数据集,我们评估了三种治疗方法对患者生存的比较效果,并评估了潜在未测量混杂的影响。这项工作中开发的方法可在 包中直接使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16eb/9804632/72f17dc136cf/SIM-41-4982-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验