Suppr超能文献

综合表位突变扫描数据库可实现准确的T细胞受体交叉反应性预测。

Comprehensive epitope mutational scan database enables accurate T cell receptor cross-reactivity prediction.

作者信息

Banerjee Amitava, Pattinson David J, Wincek Cornelia L, Bunk Paul, Axhemi Armend, Chapin Sarah R, Navlakha Saket, Meyer Hannah V

机构信息

Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.

Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA.

出版信息

bioRxiv. 2025 Feb 21:2024.01.22.576714. doi: 10.1101/2024.01.22.576714.

Abstract

Predicting T cell receptor (TCR) activation is challenging due to the lack of both unbiased benchmarking datasets and computational methods that are sensitive to small mutations to a peptide. To address these challenges, we curated a comprehensive database, called BATCAVE, encompassing complete single amino acid mutational assays of more than 22,000 TCR-peptide pairs, centered around 25 immunogenic human and mouse epitopes, across both major histocompatibility complex classes, against 151 TCRs. We then present an interpretable Bayesian model, called BATMAN, that can predict the set of peptides that activates a TCR. We also developed an active learning version of BATMAN, which can efficiently learn the binding profile of a novel TCR by selecting an informative yet small number of peptides to assay. When validated on our database, BATMAN outperforms existing methods and reveals important biochemical predictors of TCR-peptide interactions. Finally, we demonstrate the broad applicability of BATMAN, including for predicting off-target effects for TCR-based therapies and polyclonal T cell responses.

摘要

由于缺乏无偏基准数据集以及对肽段小突变敏感的计算方法,预测T细胞受体(TCR)激活具有挑战性。为应对这些挑战,我们精心策划了一个名为BATCAVE的综合数据库,其中包含超过22,000个TCR-肽对的完整单氨基酸突变分析,以25个人类和小鼠免疫原性表位为中心,涵盖两个主要组织相容性复合体类别,针对151个TCR。然后,我们提出了一种名为BATMAN的可解释贝叶斯模型,该模型可以预测激活TCR的肽段集合。我们还开发了BATMAN的主动学习版本,它可以通过选择少量信息丰富的肽段进行检测,有效地学习新型TCR的结合谱。在我们的数据库上进行验证时,BATMAN优于现有方法,并揭示了TCR-肽相互作用的重要生化预测因子。最后,我们展示了BATMAN的广泛适用性,包括预测基于TCR的疗法的脱靶效应和多克隆T细胞反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee51/11867446/1eecc120e9ec/nihpp-2024.01.22.576714v3-f0006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验