Suppr超能文献

一种用于滚动轴承早期故障预警的新型双输入深度异常检测方法

A New Dual-Input Deep Anomaly Detection Method for Early Faults Warning of Rolling Bearings.

作者信息

Kang Yuxiang, Chen Guo, Wang Hao, Pan Wenping, Wei Xunkai

机构信息

College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

College of General Aviation and Flight, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

出版信息

Sensors (Basel). 2023 Sep 21;23(18):8013. doi: 10.3390/s23188013.

Abstract

To address the problem of low fault diagnosis accuracy caused by insufficient fault samples of rolling bearings, a dual-input deep anomaly detection method with zero fault samples is proposed for early fault warning of rolling bearings. First, the main framework of dual-input feature extraction based on a convolutional neural network (CNN) is established, and the two outputs of the main frame are subjected to the autoencoder structure. Then, the secondary feature extraction is performed. At the same time, the experience pool structure is introduced to improve the feature learning ability of the network. A new objective loss function is also proposed to learn the network parameters. Then, the vibration acceleration signal is preprocessed by wavelet to obtain multiple signals in different frequency bands, and the two signals in the high-frequency band are two-dimensionally encoded and used as the network input. Finally, the unsupervised learning of the model is completed on five sets of actual full-life rolling bearing fault data sets relying only on some samples in a normal state. The verification results show that the proposed method can realize earlier than the RMS, Kurtosis, and other features. The early fault warning and the accuracy rate of more than 98% show that the method is highly capable of early fault warning and anomaly detection.

摘要

为解决滚动轴承故障样本不足导致故障诊断准确率低的问题,提出一种零故障样本的双输入深度异常检测方法用于滚动轴承早期故障预警。首先,建立基于卷积神经网络(CNN)的双输入特征提取主框架,主框架的两个输出接入自动编码器结构。然后,进行二次特征提取。同时,引入经验池结构提升网络的特征学习能力。还提出一种新的目标损失函数来学习网络参数。接着,对振动加速度信号进行小波预处理得到不同频带的多个信号,将高频带的两个信号进行二维编码作为网络输入。最后,仅依靠正常状态下的部分样本在五组实际全寿命滚动轴承故障数据集上完成模型的无监督学习。验证结果表明,所提方法能比均方根值(RMS)、峭度等特征更早地实现早期故障预警,且准确率超过98%,表明该方法具有很强的早期故障预警和异常检测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d41/10535341/0fa6948fb336/sensors-23-08013-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验