Department of Biosystems Science and Engineering (D-BSSE) and SIB Swiss Institute of Bioinformatics, ETH Zurich, 4058, Basel, Switzerland.
BMC Bioinformatics. 2023 Dec 7;24(Suppl 1):460. doi: 10.1186/s12859-023-05538-z.
Synthetic biologists use and combine diverse biological parts to build systems such as genetic circuits that perform desirable functions in, for example, biomedical or industrial applications. Computer-aided design methods have been developed to help choose appropriate network structures and biological parts for a given design objective. However, they almost always model the behavior of the network in an average cell, despite pervasive cell-to-cell variability.
Here, we present a computational framework and an efficient algorithm to guide the design of synthetic biological circuits while accounting for cell-to-cell variability explicitly. Our design method integrates a Non-linear Mixed-Effects (NLME) framework into a Markov Chain Monte-Carlo (MCMC) algorithm for design based on ordinary differential equation (ODE) models. The analysis of a recently developed transcriptional controller demonstrates first insights into design guidelines when trying to achieve reliable performance under cell-to-cell variability.
We anticipate that our method not only facilitates the rational design of synthetic networks under cell-to-cell variability, but also enables novel applications by supporting design objectives that specify the desired behavior of cell populations.
合成生物学家使用和组合各种生物部件来构建系统,例如遗传电路,这些系统在例如生物医学或工业应用中执行理想的功能。已经开发了计算机辅助设计方法来帮助选择适当的网络结构和生物部件以实现给定的设计目标。然而,尽管存在普遍的细胞间变异性,但它们几乎总是在平均细胞中模拟网络的行为。
在这里,我们提出了一个计算框架和一种有效的算法,以在考虑细胞间变异性的情况下指导合成生物电路的设计。我们的设计方法将非线性混合效应(NLME)框架集成到基于常微分方程(ODE)模型的设计的马尔可夫链蒙特卡罗(MCMC)算法中。对最近开发的转录控制器的分析首次深入探讨了在细胞间变异性下实现可靠性能的设计准则。
我们预计,我们的方法不仅可以促进在细胞间变异性下合理设计合成网络,而且还可以通过支持指定细胞群体所需行为的设计目标来实现新的应用。