Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland.
Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland.
Cell Syst. 2017 Feb 22;4(2):207-218.e14. doi: 10.1016/j.cels.2017.01.003. Epub 2017 Feb 8.
Cell classifiers are genetic logic circuits that transduce endogenous molecular inputs into cell-type-specific responses. Designing classifiers that achieve optimal differential response between specific cell types is a hard computational problem because it involves selection of endogenous inputs and optimization of both biochemical parameters and a logic function. To address this problem, we first derive an optimal set of biochemical parameters with the largest expected differential response over a diverse set of logic circuits, and second, we use these parameters in an evolutionary algorithm to select circuit inputs and optimize the logic function. Using this approach, we design experimentally feasible microRNA-based circuits capable of perfect discrimination for several real-world cell-classification tasks. We also find that under realistic cell-to-cell variation, circuit performance is comparable to standard cross-validation performance estimates. Our approach facilitates the generation of candidate circuits for experimental testing in therapeutic settings that require precise cell targeting, such as cancer therapy.
细胞分类器是将内源性分子输入转化为特定细胞类型反应的遗传逻辑电路。设计能够在特定细胞类型之间实现最佳差异响应的分类器是一个具有挑战性的计算问题,因为它涉及内源性输入的选择以及生化参数和逻辑函数的优化。为了解决这个问题,我们首先推导出一组最佳的生化参数,这些参数在一组多样化的逻辑电路中具有最大的预期差异响应,其次,我们在进化算法中使用这些参数来选择电路输入并优化逻辑函数。通过这种方法,我们设计了实验上可行的基于 microRNA 的电路,能够完美区分几个现实世界的细胞分类任务。我们还发现,在现实的细胞间变异下,电路性能与标准交叉验证性能估计相当。我们的方法为治疗性应用中需要精确细胞靶向的候选电路的生成提供了便利,例如癌症治疗。