Suppr超能文献

在青年时期的功能性大脑网络中统一模块性和核心-边缘结构的概念。

Unifying the Notions of Modularity and Core-Periphery Structure in Functional Brain Networks during Youth.

机构信息

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.

Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Cereb Cortex. 2020 Mar 14;30(3):1087-1102. doi: 10.1093/cercor/bhz150.

Abstract

At rest, human brain functional networks display striking modular architecture in which coherent clusters of brain regions are activated. The modular account of brain function is pervasive, reliable, and reproducible. Yet, a complementary perspective posits a core-periphery or rich-club account of brain function, where hubs are densely interconnected with one another, allowing for integrative processing. Unifying these two perspectives has remained difficult due to the fact that the methodological tools to identify modules are entirely distinct from the methodological tools to identify core-periphery structure. Here, we leverage a recently-developed model-based approach-the weighted stochastic block model-that simultaneously uncovers modular and core-periphery structure, and we apply it to functional magnetic resonance imaging data acquired at rest in 872 youth of the Philadelphia Neurodevelopmental Cohort. We demonstrate that functional brain networks display rich mesoscale organization beyond that sought by modularity maximization techniques. Moreover, we show that this mesoscale organization changes appreciably over the course of neurodevelopment, and that individual differences in this organization predict individual differences in cognition more accurately than module organization alone. Broadly, our study provides a unified assessment of modular and core-periphery structure in functional brain networks, offering novel insights into their development and implications for behavior.

摘要

在静息状态下,人类大脑的功能网络显示出引人注目的模块化结构,其中一致的脑区集群被激活。大脑功能的模块化解释是普遍的、可靠的和可重复的。然而,另一种互补的观点提出了大脑功能的核心-边缘或丰富俱乐部的解释,其中枢纽区域彼此之间密集地相互连接,从而实现了整合处理。由于识别模块的方法工具与识别核心-边缘结构的方法工具完全不同,因此统一这两种观点一直很困难。在这里,我们利用了一种新开发的基于模型的方法——加权随机块模型,该模型同时揭示了模块和核心-边缘结构,并将其应用于在费城神经发育队列的 872 名年轻人中采集的静息状态下的功能磁共振成像数据。我们证明,功能大脑网络显示出丰富的中尺度组织,超出了模块化最大化技术所寻求的范围。此外,我们表明,这种中尺度组织在神经发育过程中发生了显著变化,并且这种组织的个体差异比模块组织本身更能准确地预测认知个体差异。总的来说,我们的研究提供了对功能大脑网络中模块化和核心-边缘结构的统一评估,为它们的发展及其对行为的影响提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/599e/7132934/cabc17da2dab/bhz150f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验