Suppr超能文献

跨个体功能脑网络动态社区结构检测:一种多层方法。

Detecting Dynamic Community Structure in Functional Brain Networks Across Individuals: A Multilayer Approach.

出版信息

IEEE Trans Med Imaging. 2021 Feb;40(2):468-480. doi: 10.1109/TMI.2020.3030047. Epub 2021 Feb 2.

Abstract

OBJECTIVE

We present a unified statistical framework for characterizing community structure of brain functional networks that captures variation across individuals and evolution over time. Existing methods for community detection focus only on single-subject analysis of dynamic networks; while recent extensions to multiple-subjects analysis are limited to static networks.

METHOD

To overcome these limitations, we propose a multi-subject, Markov-switching stochastic block model (MSS-SBM) to identify state-related changes in brain community organization over a group of individuals. We first formulate a multilayer extension of SBM to describe the time-dependent, multi-subject brain networks. We develop a novel procedure for fitting the multilayer SBM that builds on multislice modularity maximization which can uncover a common community partition of all layers (subjects) simultaneously. By augmenting with a dynamic Markov switching process, our proposed method is able to capture a set of distinct, recurring temporal states with respect to inter-community interactions over subjects and the change points between them.

RESULTS

Simulation shows accurate community recovery and tracking of dynamic community regimes over multilayer networks by the MSS-SBM. Application to task fMRI reveals meaningful non-assortative brain community motifs, e.g., core-periphery structure at the group level, that are associated with language comprehension and motor functions suggesting their putative role in complex information integration. Our approach detected dynamic reconfiguration of modular connectivity elicited by varying task demands and identified unique profiles of intra and inter-community connectivity across different task conditions.

CONCLUSION

The proposed multilayer network representation provides a principled way of detecting synchronous, dynamic modularity in brain networks across subjects.

摘要

目的

我们提出了一种用于刻画脑功能网络社区结构的统一统计框架,该框架可以捕捉个体间的变化和随时间的演变。现有的社区检测方法仅关注于动态网络的单个体分析;而最近对多主体分析的扩展仅限于静态网络。

方法

为了克服这些限制,我们提出了一种多主体、马尔可夫切换随机块模型(MSS-SBM),以识别个体组中大脑社区组织与状态相关的变化。我们首先提出了 SBM 的多层扩展,以描述时变的、多主体脑网络。我们开发了一种新的拟合多层 SBM 的方法,该方法基于多切片模块最大化,可以同时揭示所有层(主体)的共同社区划分。通过增加动态马尔可夫切换过程,我们的方法能够捕捉到一组不同的、重复的时间状态,这些状态与主体间的社区间相互作用以及它们之间的变化点有关。

结果

模拟表明,MSS-SBM 能够准确地恢复和跟踪多层网络中的动态社区状态。在任务 fMRI 中的应用揭示了有意义的非聚集脑社区模式,例如,组水平上的核心-外围结构,与语言理解和运动功能有关,表明它们在复杂信息整合中的潜在作用。我们的方法检测到了由不同任务需求引起的模块化连接的动态重新配置,并确定了不同任务条件下跨内和社区连接的独特模式。

结论

所提出的多层网络表示提供了一种在主体间检测大脑网络中同步、动态模块性的原则方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验