Swain Bishal Ranjan, Cho Dahee, Park Joongcheul, Roh Jae-Seung, Ko Jaepil
Department of Computer & AI Convergence Engineering, Kumoh National Institute of Technology, Gumi-si 39177, Republic of Korea.
Research Institute of Science and Technology, Pohang-si 790660, Republic of Korea.
Materials (Basel). 2023 Nov 21;16(23):7254. doi: 10.3390/ma16237254.
The quantification of the phase fraction is critical in materials science, bridging the gap between material composition, processing techniques, microstructure, and resultant properties. Traditional methods involving manual annotation are precise but labor-intensive and prone to human inaccuracies. We propose an automated segmentation technique for high-tensile strength alloy steel, where the complexity of microstructures presents considerable challenges. Our method leverages the UNet architecture, originally developed for biomedical image segmentation, and optimizes its performance via careful hyper-parameter selection and data augmentation. We employ Electron Backscatter Diffraction (EBSD) imagery for complex-phase segmentation and utilize a combined loss function to capture both textural and structural characteristics of the microstructures. Additionally, this work is the first to examine the scalability of the model across varying magnifications and types of steel and achieves high accuracy in terms of dice scores demonstrating the adaptability and robustness of the model.
相分数的量化在材料科学中至关重要,它弥合了材料成分、加工技术、微观结构和最终性能之间的差距。传统的人工标注方法精确但劳动强度大,且容易出现人为误差。我们针对高强度合金钢提出了一种自动分割技术,其微观结构的复杂性带来了相当大的挑战。我们的方法利用最初为生物医学图像分割而开发的UNet架构,并通过仔细的超参数选择和数据增强来优化其性能。我们采用电子背散射衍射(EBSD)图像进行复杂相分割,并使用组合损失函数来捕捉微观结构的纹理和结构特征。此外,这项工作首次研究了模型在不同放大倍数和钢种类型下的可扩展性,并在骰子分数方面取得了高精度,证明了模型的适应性和鲁棒性。