Suppr超能文献

卷积模糊注意网络用于细胞核分割。

Convolutional Blur Attention Network for Cell Nuclei Segmentation.

机构信息

Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan.

Faculty of Digital Technology, University of Technology and Education-The University of Danang, Danang 550000, Vietnam.

出版信息

Sensors (Basel). 2022 Feb 18;22(4):1586. doi: 10.3390/s22041586.

Abstract

Accurately segmented nuclei are important, not only for cancer classification, but also for predicting treatment effectiveness and other biomedical applications. However, the diversity of cell types, various external factors, and illumination conditions make nucleus segmentation a challenging task. In this work, we present a new deep learning-based method for cell nucleus segmentation. The proposed convolutional blur attention (CBA) network consists of downsampling and upsampling procedures. A blur attention module and a blur pooling operation are used to retain the feature salience and avoid noise generation in the downsampling procedure. A pyramid blur pooling (PBP) module is proposed to capture the multi-scale information in the upsampling procedure. The superiority of the proposed method has been compared with a few prior segmentation models, namely U-Net, ENet, SegNet, LinkNet, and Mask RCNN on the 2018 Data Science Bowl (DSB) challenge dataset and the multi-organ nucleus segmentation (MoNuSeg) at MICCAI 2018. The Dice similarity coefficient and some evaluation matrices, such as F1 score, recall, precision, and average Jaccard index () were used to evaluate the segmentation efficiency of these models. Overall, the proposal method in this paper has the best performance, the indicator on the DSB dataset and MoNuSeg is 0.8429, 0.7985, respectively.

摘要

准确分割的细胞核不仅对于癌症分类很重要,而且对于预测治疗效果和其他生物医学应用也很重要。然而,细胞类型的多样性、各种外部因素和光照条件使得细胞核分割成为一项具有挑战性的任务。在这项工作中,我们提出了一种新的基于深度学习的细胞细胞核分割方法。所提出的卷积模糊注意 (CBA) 网络由下采样和上采样过程组成。模糊注意模块和模糊池化操作用于在下采样过程中保留特征显著性并避免噪声产生。提出了一种金字塔模糊池化 (PBP) 模块,用于在上采样过程中捕获多尺度信息。在 2018 年数据科学碗 (DSB) 挑战赛数据集和 2018 年 MICCAI 的多器官细胞核分割 (MoNuSeg) 上,将所提出的方法与 U-Net、ENet、SegNet、LinkNet 和 Mask RCNN 等几种分割模型进行了比较。使用 Dice 相似系数和一些评估矩阵,如 F1 分数、召回率、精度和平均 Jaccard 指数 ( ) 来评估这些模型的分割效率。总体而言,本文提出的方法性能最佳,在 DSB 数据集和 MoNuSeg 上的指标分别为 0.8429 和 0.7985。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8512/8878074/cea1cd2f93f9/sensors-22-01586-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验