Suppr超能文献

受生物启发的循环潜在空间用于估计物体的旋转。

Bio-inspired circular latent spaces to estimate objects' rotations.

作者信息

Plebe Alice, Da Lio Mauro

机构信息

Department of Industrial Engineering, University of Trento, Trento, Italy.

出版信息

Front Comput Neurosci. 2023 Nov 24;17:1268116. doi: 10.3389/fncom.2023.1268116. eCollection 2023.

Abstract

This paper proposes a neural network model that estimates the rotation angle of unknown objects from RGB images using an approach inspired by biological neural circuits. The proposed model embeds the understanding of rotational transformations into its architecture, in a way inspired by how rotation is represented in the ellipsoid body of . To effectively capture the cyclic nature of rotation, the network's latent space is structured in a circular manner. The rotation operator acts as a shift in the circular latent space's units, establishing a direct correspondence between shifts in the latent space and angular rotations of the object in the world space. Our model accurately estimates the difference in rotation between two views of an object, even for categories of objects that it has never seen before. In addition, our model outperforms three state-of-the-art convolutional networks commonly used as the backbone for vision-based models in robotics.

摘要

本文提出了一种神经网络模型,该模型使用受生物神经回路启发的方法从RGB图像估计未知物体的旋转角度。所提出的模型将对旋转变换的理解嵌入到其架构中,其方式受[具体生物结构中旋转表示方式]的启发。为了有效捕捉旋转的循环特性,网络的潜在空间以圆形方式构建。旋转算子在圆形潜在空间的单元中充当移位,在潜在空间的移位与世界空间中物体的角旋转之间建立直接对应关系。我们的模型能够准确估计物体两个视图之间的旋转差异,即使对于它从未见过的物体类别也是如此。此外,我们的模型优于通常用作机器人视觉模型主干的三种最先进的卷积网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/725a/10704989/8cb84110d50a/fncom-17-1268116-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验