Department of Statistics, Columbia University, Room 928 SSW, 1255 Amsterdam Avenue, New York, NY, 10027, USA.
Psychometrika. 2024 Mar;89(1):118-150. doi: 10.1007/s11336-023-09941-6. Epub 2023 Dec 11.
Cognitive diagnostic models (CDMs) are discrete latent variable models popular in educational and psychological measurement. In this work, motivated by the advantages of deep generative modeling and by identifiability considerations, we propose a new family of DeepCDMs, to hunt for deep discrete diagnostic information. The new class of models enjoys nice properties of identifiability, parsimony, and interpretability. Mathematically, DeepCDMs are entirely identifiable, including even fully exploratory settings and allowing to uniquely identify the parameters and discrete loading structures (the " -matrices") at all different depths in the generative model. Statistically, DeepCDMs are parsimonious, because they can use a relatively small number of parameters to expressively model data thanks to the depth. Practically, DeepCDMs are interpretable, because the shrinking-ladder-shaped deep architecture can capture cognitive concepts and provide multi-granularity skill diagnoses from coarse to fine grained and from high level to detailed. For identifiability, we establish transparent identifiability conditions for various DeepCDMs. Our conditions impose intuitive constraints on the structures of the multiple -matrices and inspire a generative graph with increasingly smaller latent layers when going deeper. For estimation and computation, we focus on the confirmatory setting with known -matrices and develop Bayesian formulations and efficient Gibbs sampling algorithms. Simulation studies and an application to the TIMSS 2019 math assessment data demonstrate the usefulness of the proposed methodology.
认知诊断模型(CDMs)是教育和心理测量中流行的离散潜在变量模型。在这项工作中,受深度生成模型优势和可识别性考虑的启发,我们提出了一个新的深度 CDMs 家族,以寻找深度离散的诊断信息。新类模型具有可识别性、简约性和可解释性等良好性质。从数学上讲,DeepCDMs 是完全可识别的,包括完全探索性设置,并允许在生成模型的所有不同深度上唯一识别参数和离散加载结构(“ - 矩阵”)。从统计学上讲,DeepCDMs 是简约的,因为它们可以使用相对较少的参数来表达数据,这要归功于深度。从实际角度来看,DeepCDMs 是可解释的,因为收缩梯形状的深度结构可以捕捉认知概念,并从粗到细、从高层次到详细层次提供多粒度的技能诊断。为了可识别性,我们为各种 DeepCDMs 建立了透明的可识别性条件。我们的条件对多个 - 矩阵的结构施加了直观的约束,并在深入时激发了具有越来越小潜在层的生成图。对于估计和计算,我们专注于具有已知 - 矩阵的验证设置,并开发了贝叶斯公式和有效的 Gibbs 采样算法。模拟研究和对 TIMSS 2019 数学评估数据的应用证明了所提出方法的有用性。