Suppr超能文献

图论分析揭示了一个易受攻击的聚集性疼痛网络。

Graph theory analysis reveals an assortative pain network vulnerable to attacks.

机构信息

Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.

UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.

出版信息

Sci Rep. 2023 Dec 11;13(1):21985. doi: 10.1038/s41598-023-49458-7.

Abstract

The neural substrate of pain experience has been described as a dense network of connected brain regions. However, the connectivity pattern of these brain regions remains elusive, precluding a deeper understanding of how pain emerges from the structural connectivity. Here, we employ graph theory to systematically characterize the architecture of a comprehensive pain network, including both cortical and subcortical brain areas. This structural brain network consists of 49 nodes denoting pain-related brain areas, linked by edges representing their relative incoming and outgoing axonal projection strengths. Within this network, 63% of brain areas share reciprocal connections, reflecting a dense network. The clustering coefficient, a measurement of the probability that adjacent nodes are connected, indicates that brain areas in the pain network tend to cluster together. Community detection, the process of discovering cohesive groups in complex networks, successfully reveals two known subnetworks that specifically mediate the sensory and affective components of pain, respectively. Assortativity analysis, which evaluates the tendency of nodes to connect with other nodes that have similar features, indicates that the pain network is assortative. Finally, robustness, the resistance of a complex network to failures and perturbations, indicates that the pain network displays a high degree of error tolerance (local failure rarely affects the global information carried by the network) but is vulnerable to attacks (selective removal of hub nodes critically changes network connectivity). Taken together, graph theory analysis unveils an assortative structural pain network in the brain that processes nociceptive information. Furthermore, the vulnerability of this network to attack presents the possibility of alleviating pain by targeting the most connected brain areas in the network.

摘要

疼痛体验的神经基础被描述为一个密集的大脑区域连接网络。然而,这些大脑区域的连接模式仍然难以捉摸,这妨碍了我们更深入地了解疼痛是如何从结构连接中产生的。在这里,我们采用图论方法来系统地描述一个全面的疼痛网络的结构,包括皮质和皮质下脑区。这个结构大脑网络由 49 个节点表示与疼痛相关的大脑区域,由表示它们相对传入和传出轴突投射强度的边连接。在这个网络中,63%的大脑区域共享相互连接,反映出一个密集的网络。聚类系数是衡量相邻节点连接概率的指标,表明疼痛网络中的大脑区域倾向于聚集在一起。社区检测是发现复杂网络中凝聚群的过程,成功地揭示了两个已知的子网,分别专门介导疼痛的感觉和情感成分。配价分析评估了节点与具有相似特征的其他节点连接的趋势,表明疼痛网络是配价的。最后,鲁棒性是指复杂网络对故障和扰动的抵抗力,表明疼痛网络具有高度的容错性(局部故障很少影响网络携带的全局信息),但易受攻击(选择性地去除枢纽节点会严重改变网络连接)。综上所述,图论分析揭示了大脑中一个与感觉信息处理相关的配价结构疼痛网络。此外,该网络易受攻击的特点为通过靶向网络中连接最紧密的大脑区域来缓解疼痛提供了可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0de9/10713541/1ec4927096b0/41598_2023_49458_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验