Wolf Jonas, Pellumbi Kevinjeorjios, Haridas Sarankumar, Kull Tobias, Kleinhaus Julian T, Wickert Leon, Apfel Ulf-Peter, Siegmund Daniel
Abteilung Elektrosynthese, Fraunhofer Institut für Umwelt-, Sicherheits-und Energietechnik UMSICHT, Osterfelder Straße 3, 46047, Oberhausen, Germany.
Anorganische Chemie I, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
Chemistry. 2024 Mar 25;30(18):e202303808. doi: 10.1002/chem.202303808. Epub 2024 Feb 9.
Electrocatalytic hydrogenations (ECH) enable the reduction of organic substrates upon usage of electric current and present a sustainable alternative to conventional processes if green electricity is used. Opposed to most current protocols for electrode preparation, this work presents a one-step binder- and additive-free production of silver- and copper-electroplated electrodes. Controlled adjustment of the preparation parameters allows for the tuning of catalyst morphology and its electrochemical properties. Upon optimization of the deposition protocol and carbon support, high faradaic efficiencies of 93 % for the ECH of the Vitamin A- and E-synthon 2-methyl-3-butyn-2-ol (MBY) are achieved that can be maintained at current densities of 240 mA cm and minimal catalyst loadings of 0.2 mg cm, corresponding to an unmatched production rate of 1.47 kg g h. For a continuous hydrogenation process, the protocol can be directly transferred into a single-pass operation mode giving a production rate of 1.38 kg g h. Subsequently, the substrate spectrum was extended to a total of 17 different C-C-, C-O- and N-O-unsaturated compounds revealing the general applicability of the reported process. Our results lay an important groundwork for the development of electrochemical reactors and electrodes able to directly compete with the palladium-based thermocatalytic state of the art.
电催化氢化反应(ECH)能够在使用电流时实现有机底物的还原,如果使用绿色电力,它将成为传统工艺的可持续替代方案。与目前大多数电极制备方案不同,这项工作展示了一种一步法制备无粘结剂和添加剂的银和铜电镀电极的方法。通过对制备参数的可控调节,可以调整催化剂的形态及其电化学性质。在优化沉积方案和碳载体后,对于维生素A和E的合成子2-甲基-3-丁炔-2-醇(MBY)的电催化氢化反应,实现了93%的高法拉第效率,该效率可在240 mA cm的电流密度和0.2 mg cm的最小催化剂负载量下保持,对应于1.47 kg g h的无与伦比的生产率。对于连续氢化过程,该方案可直接转换为单程操作模式,生产率为1.38 kg g h。随后,底物范围扩展到总共17种不同的碳-碳、碳-氧和氮-氧不饱和化合物,揭示了所报道工艺的普遍适用性。我们的结果为开发能够直接与基于钯的热催化现有技术竞争的电化学反应器和电极奠定了重要基础。