Wickert Leon, Pellumbi Kevinjeorjios, Kleinhaus Julian T, Wolf Jonas, Obel Julia, Cao Rui, Siegmund Daniel, Apfel Ulf-Peter
Activation of Small Molecules/Technical Electrochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
Department Electrosynthesis, Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047, Oberhausen, Germany.
ChemSusChem. 2025 Apr 14;18(8):e202402086. doi: 10.1002/cssc.202402086. Epub 2024 Dec 20.
Electrosynthetic processes powered by renewable energy present a viable solution to decarbonize the chemical industry, while producing essential chemical products for modern society. However, replacing well-established thermocatalytic methods with renewable-powered electrosynthesis requires cost-efficient and highly optimized systems. Current optimization of electrolysis conditions towards industrial applications involving scalable electrodes is time-consuming, highlighting the necessity for the development of electrochemical setups aimed at rapid and material efficient testing. To address this challenge, we introduce a 3D-printed electrochemical screening reactor designed for rapid optimization of relevant electrochemical parameters, utilizing electrode and membrane materials comparable to those in scalable electrolyzers. The reactor comprises eight individual two-compartment cells that can be operated simultaneously and independently. To evaluate the reactor's ability to provide meaningful insights on scalable cell designs, trends were compared with data from conventional scalable systems for electrochemical hydrogenations (EChH), demonstrating fast and accurate parameter optimization with the screening reactor. A detailed description of the reactor design and construction data files are provided using open-source tools, enabling easy modification for anyone. We believe this screening reactor will be a valuable tool for the scientific community, for facilitating the discovery of reactions with customized electrode designs and rapidly improving conditions in established large-scale electrolyzers.
由可再生能源驱动的电合成过程为化学工业脱碳提供了一个可行的解决方案,同时为现代社会生产必需的化学产品。然而,用可再生能源驱动的电合成取代成熟的热催化方法需要具有成本效益且高度优化的系统。目前针对涉及可扩展电极的工业应用对电解条件进行优化很耗时,这凸显了开发旨在进行快速且材料高效测试的电化学装置的必要性。为应对这一挑战,我们引入了一种3D打印的电化学筛选反应器,该反应器旨在快速优化相关电化学参数,采用与可扩展电解槽中类似的电极和膜材料。该反应器由八个独立的两室电解池组成,这些电解池可以同时且独立地运行。为了评估该反应器对可扩展电池设计提供有意义见解的能力,将相关趋势与来自传统可扩展电化学氢化(EChH)系统的数据进行了比较,结果表明使用筛选反应器可实现快速且准确的参数优化。使用开源工具提供了反应器设计和构建数据文件的详细描述,任何人都可以轻松修改。我们相信这种筛选反应器将成为科学界的一个有价值的工具,有助于发现具有定制电极设计的反应,并迅速改善现有大型电解槽的条件。