Wolf Jonas, Shahrour Fatima, Acar Zafer, Pellumbi Kevinjeorjios, Kleinhaus Julian Tobias, Wickert Leon, Apfel Ulf-Peter, Siegmund Daniel
Department of Electrocatalysis, Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, 46047 Oberhausen, Germany.
Technical Electrochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany.
iScience. 2025 Jan 10;28(2):111789. doi: 10.1016/j.isci.2025.111789. eCollection 2025 Feb 21.
Electrosynthesis has the potential to revolutionize industrial organic synthesis sustainably and efficiently. However, high cell voltages and low stability often arise due to solubility issues with organic solvents, while protic electrolytes restrict substrate options. We present a three-layered electrode design that enables the use of concentrated to neat substrate feeds. This design separates the organic substrate from the aqueous electrolyte using layers with varying porosity and hydrophilicity, ensuring precise reactant transport to the catalyst layer while minimizing substrate and electrolyte crossover. We demonstrate its effectiveness by semi-hydrogenating three alkynols with different hydrophobicities. For the semi-hydrogenation of 3-methyl-1-pentyn-3-ol in pure form, we achieved 65% faradaic efficiency at 80 mA cm. Additionally, semi-hydrogenation of neat 2-methyl-3-butyn-2-ol on palladium showed a faradaic efficiency for semi-hydrogenation of 36%, that was stable for 22 h. This design could be pioneering the electrochemical valorization of neat substrates, reducing the need for extensive downstream processing.
电合成有潜力以可持续且高效的方式彻底改变工业有机合成。然而,由于有机溶剂的溶解性问题,常常会出现高电池电压和低稳定性的情况,而质子电解质则限制了底物的选择。我们提出了一种三层电极设计,该设计能够使用浓缩至纯的底物进料。这种设计利用具有不同孔隙率和亲水性的层将有机底物与水性电解质分开,确保反应物精确输送到催化剂层,同时最大限度地减少底物和电解质的交叉。我们通过对三种不同疏水性的炔醇进行半氢化反应来证明其有效性。对于纯形式的3-甲基-1-戊炔-3-醇的半氢化反应,我们在80 mA cm下实现了65%的法拉第效率。此外,在钯上对纯2-甲基-3-丁炔-2-醇进行半氢化反应,半氢化的法拉第效率为36%,并且在22小时内保持稳定。这种设计可能开创了纯底物的电化学增值先河,减少了大量下游加工的需求。