Suppr超能文献

急诊科快速风险分层的可解释机器学习模型:一项多中心研究。

Explainable Machine Learning Models for Rapid Risk Stratification in the Emergency Department: A Multicenter Study.

作者信息

van Doorn William P T M, Helmich Floris, van Dam Paul M E L, Jacobs Leo H J, Stassen Patricia M, Bekers Otto, Meex Steven J R

机构信息

Central Diagnostic Laboratory, Department of Clinical Chemistry, Maastricht University Medical Center, Maastricht, the Netherlands.

CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.

出版信息

J Appl Lab Med. 2024 Mar 1;9(2):212-222. doi: 10.1093/jalm/jfad094.

Abstract

BACKGROUND

Risk stratification of patients presenting to the emergency department (ED) is important for appropriate triage. Diagnostic laboratory tests are an essential part of the workup and risk stratification of these patients. Using machine learning, the prognostic power and clinical value of these tests can be amplified greatly. In this study, we applied machine learning to develop an accurate and explainable clinical decision support tool model that predicts the likelihood of 31-day mortality in ED patients (the RISKINDEX). This tool was developed and evaluated in four Dutch hospitals.

METHODS

Machine learning models included patient characteristics and available laboratory data collected within the first 2 h after ED presentation, and were trained using 5 years of data from consecutive ED patients from the Maastricht University Medical Center (Maastricht), Meander Medical Center (Amersfoort), and Zuyderland Medical Center (Sittard and Heerlen). A sixth year of data was used to evaluate the models using area under the receiver-operating-characteristic curve (AUROC) and calibration curves. The Shapley additive explanations (SHAP) algorithm was used to obtain explainable machine learning models.

RESULTS

The present study included 266 327 patients with 7.1 million laboratory results available. Models show high diagnostic performance with AUROCs of 0.94, 0.98, 0.88, and 0.90 for Maastricht, Amersfoort, Sittard and Heerlen, respectively. The SHAP algorithm was utilized to visualize patient characteristics and laboratory data patterns that underlie individual RISKINDEX predictions.

CONCLUSIONS

Our clinical decision support tool has excellent diagnostic performance in predicting 31-day mortality in ED patients. Follow-up studies will assess whether implementation of these algorithms can improve clinically relevant end points.

摘要

背景

对前往急诊科(ED)就诊的患者进行风险分层对于适当的分诊至关重要。诊断性实验室检查是这些患者检查和风险分层的重要组成部分。通过机器学习,可以大大增强这些检查的预后能力和临床价值。在本研究中,我们应用机器学习开发了一种准确且可解释的临床决策支持工具模型,用于预测急诊科患者31天死亡率(RISKINDEX)。该工具在四家荷兰医院进行了开发和评估。

方法

机器学习模型纳入了患者特征以及急诊科就诊后最初2小时内收集的可用实验室数据,并使用来自马斯特里赫特大学医学中心(马斯特里赫特)、梅安德医疗中心(阿默斯福特)和祖伊德兰德医疗中心(锡塔德和海尔伦)连续急诊科患者的5年数据进行训练。使用第六年的数据,通过受试者操作特征曲线下面积(AUROC)和校准曲线来评估模型。使用夏普利值加法解释(SHAP)算法来获得可解释的机器学习模型。

结果

本研究纳入了266327例患者,有710万份实验室检查结果。模型显示出较高的诊断性能,马斯特里赫特、阿默斯福特、锡塔德和海尔伦的AUROC分别为0.94、0.98、0.88和0.90。利用SHAP算法可视化了构成个体RISKINDEX预测基础的患者特征和实验室数据模式。

结论

我们的临床决策支持工具在预测急诊科患者31天死亡率方面具有出色的诊断性能。后续研究将评估这些算法的实施是否能改善临床相关终点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验