Suppr超能文献

小蛋白 MntS 由信号肽进化而来,获得了调节大肠杆菌锰稳态的新功能。

The small protein MntS evolved from a signal peptide and acquired a novel function regulating manganese homeostasis in Escherichia coli.

机构信息

Department of Chemistry, University of Wisconsin, Oshkosh, Wisconsin, USA.

National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA.

出版信息

Mol Microbiol. 2024 Jan;121(1):152-166. doi: 10.1111/mmi.15206. Epub 2023 Dec 17.

Abstract

Small proteins (<50 amino acids) are emerging as ubiquitous and important regulators in organisms ranging from bacteria to humans, where they commonly bind to and regulate larger proteins during stress responses. However, fundamental aspects of small proteins, such as their molecular mechanism of action, downregulation after they are no longer needed, and their evolutionary provenance, are poorly understood. Here, we show that the MntS small protein involved in manganese (Mn) homeostasis binds and inhibits the MntP Mn transporter. Mn is crucial for bacterial survival in stressful environments but is toxic in excess. Thus, Mn transport is tightly controlled at multiple levels to maintain optimal Mn levels. The small protein MntS adds a new level of regulation for Mn transporters, beyond the known transcriptional and post-transcriptional control. We also found that MntS binds to itself in the presence of Mn, providing a possible mechanism of downregulating MntS activity to terminate its inhibition of MntP Mn export. MntS is homologous to the signal peptide of SitA, the periplasmic metal-binding subunit of a Mn importer. Remarkably, the homologous signal peptide regions can substitute for MntS, demonstrating a functional relationship between MntS and these signal peptides. Conserved gene neighborhoods support that MntS evolved from the signal peptide of an ancestral SitA protein, acquiring a life of its own with a distinct function in Mn homeostasis.

摘要

小分子蛋白(<50 个氨基酸)作为普遍存在且重要的调节剂,在从细菌到人类等生物中发挥作用,它们在应激反应中通常与较大的蛋白质结合并调节其功能。然而,小分子蛋白的一些基本方面,如它们的作用机制、不再需要时的下调以及它们的进化来源等,仍知之甚少。在这里,我们展示了参与锰(Mn)稳态的小分子蛋白 MntS 与 Mn 转运蛋白 MntP 结合并抑制其功能。Mn 对于细菌在应激环境中的生存至关重要,但过量则具有毒性。因此,Mn 的转运受到多层次的严格控制,以维持最佳的 Mn 水平。小分子蛋白 MntS 为 Mn 转运蛋白增加了一个新的调控水平,超出了已知的转录和转录后调控。我们还发现,MntS 在存在 Mn 的情况下会与自身结合,这为下调 MntS 活性以终止其对 MntP Mn 外排的抑制作用提供了一种可能的机制。MntS 与 SitA 的信号肽同源,SitA 是 Mn 输入蛋白的周质金属结合亚基。值得注意的是,同源的信号肽区域可以替代 MntS,这表明 MntS 与这些信号肽之间存在功能关系。保守的基因邻接支持 MntS 是从 SitA 蛋白的信号肽进化而来的,获得了自身的生命,并在 Mn 稳态中具有独特的功能。

相似文献

3
The Escherichia coli small protein MntS and exporter MntP optimize the intracellular concentration of manganese.
PLoS Genet. 2015 Mar 16;11(3):e1004977. doi: 10.1371/journal.pgen.1004977. eCollection 2015 Mar.
5
A riboswitch-controlled TerC family transporter Alx tunes intracellular manganese concentration in at alkaline pH.
J Bacteriol. 2024 Jul 25;206(7):e0016824. doi: 10.1128/jb.00168-24. Epub 2024 Jun 13.
6
Structure-function analysis of manganese exporter proteins across bacteria.
J Biol Chem. 2018 Apr 13;293(15):5715-5730. doi: 10.1074/jbc.M117.790717. Epub 2018 Feb 13.
8
Rho and riboswitch-dependent regulations of mntP gene expression evade manganese and membrane toxicities.
J Biol Chem. 2024 Dec;300(12):107967. doi: 10.1016/j.jbc.2024.107967. Epub 2024 Nov 5.
9
An Intrinsic Alkalization Circuit Turns on Riboswitch under Manganese Stress in Escherichia coli.
Microbiol Spectr. 2022 Oct 26;10(5):e0336822. doi: 10.1128/spectrum.03368-22. Epub 2022 Oct 3.
10
Novel MntR-independent mechanism of manganese homeostasis in Escherichia coli by the ribosome-associated protein HflX.
J Bacteriol. 2014 Jul;196(14):2587-97. doi: 10.1128/JB.01717-14. Epub 2014 May 2.

引用本文的文献

1
Microbial metal physiology: ions to ecosystems.
Nat Rev Microbiol. 2025 Jul 25. doi: 10.1038/s41579-025-01213-7.
2
Profiling Salmonella transcriptional dynamics during macrophage infection using a comprehensive reporter library.
Nat Microbiol. 2025 Apr;10(4):1006-1023. doi: 10.1038/s41564-025-01953-5. Epub 2025 Apr 2.
3
Structural basis for transcription activation through cooperative recruitment of MntR.
Nat Commun. 2025 Mar 5;16(1):2204. doi: 10.1038/s41467-025-57412-6.
4
Post-transcriptional regulation of aromatic amino acid metabolism by GcvB small RNA in .
Microbiol Spectr. 2025 Mar 4;13(3):e0203524. doi: 10.1128/spectrum.02035-24. Epub 2025 Jan 27.
5
Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking.
Chem Rev. 2024 Dec 25;124(24):13574-13659. doi: 10.1021/acs.chemrev.4c00264. Epub 2024 Dec 10.
6
A cell-free system for functional studies of small membrane proteins.
J Biol Chem. 2024 Nov;300(11):107850. doi: 10.1016/j.jbc.2024.107850. Epub 2024 Oct 1.
7
Large Roles of Small Proteins.
Annu Rev Microbiol. 2024 Nov;78(1):1-22. doi: 10.1146/annurev-micro-112723-083001. Epub 2024 Nov 7.

本文引用的文献

1
Regulation of Bacterial Manganese Homeostasis and Usage During Stress Responses and Pathogenesis.
Front Mol Biosci. 2022 Jul 15;9:945724. doi: 10.3389/fmolb.2022.945724. eCollection 2022.
2
Manganese is a physiologically relevant TORC1 activator in yeast and mammals.
Elife. 2022 Jul 29;11:e80497. doi: 10.7554/eLife.80497.
3
Manganese Utilization in Pathogenesis: Beyond the Canonical Antioxidant Response.
Front Cell Dev Biol. 2022 Jul 12;10:924925. doi: 10.3389/fcell.2022.924925. eCollection 2022.
4
The role of signal sequence proximal residues in the mature region of bacterial secreted proteins in E. coli.
Biochim Biophys Acta Biomembr. 2022 Oct 1;1864(10):184000. doi: 10.1016/j.bbamem.2022.184000. Epub 2022 Jul 4.
5
Sequence Conservation, Domain Architectures, and Phylogenetic Distribution of the HD-GYP Type c-di-GMP Phosphodiesterases.
J Bacteriol. 2022 Apr 19;204(4):e0056121. doi: 10.1128/jb.00561-21. Epub 2021 Dec 20.
6
Computed structures of core eukaryotic protein complexes.
Science. 2021 Dec 10;374(6573):eabm4805. doi: 10.1126/science.abm4805.
7
Cyclic CMP and cyclic UMP mediate bacterial immunity against phages.
Cell. 2021 Nov 11;184(23):5728-5739.e16. doi: 10.1016/j.cell.2021.09.031. Epub 2021 Oct 12.
8
Bacterial Small Membrane Proteins: the Swiss Army Knife of Regulators at the Lipid Bilayer.
J Bacteriol. 2022 Jan 18;204(1):e0034421. doi: 10.1128/JB.00344-21. Epub 2021 Sep 13.
9
Small Proteins; Big Questions.
J Bacteriol. 2022 Jan 18;204(1):e0034121. doi: 10.1128/JB.00341-21. Epub 2021 Jul 26.
10
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验