Suppr超能文献

在锰氧化生物膜作用下AISI 202和316L不锈钢的微生物影响腐蚀

Microbiologically influenced corrosion of AISI 202 and 316L stainless steels under manganese-oxidizing biofilms.

作者信息

Balakrishnan Anandkumar, Dhaipule Nanda Gopala Krishna, Philip John

机构信息

Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 India.

Homi Bhabha National Institute Kalpakkam, Mumbai, 400094 India.

出版信息

3 Biotech. 2024 Jan;14(1):12. doi: 10.1007/s13205-023-03845-z. Epub 2023 Dec 13.

Abstract

UNLABELLED

In this work, we study the microbiologically influenced corrosion (MIC) of AISI 316L (1-2% Mn) and AISI 202 (8-12% Mn) in the presence of manganese-oxidizing biofilms. Microbiological and 16S rRNA amplicon sequencing analysis on biofilms formed on the surfaces of both the SS materials after exposure to seawater for two months showed the presence of predominant Mn-oxidizing bacteria (MnOB) groups. The Mn contents in the biofilms formed on AISI 202 and 316L were 0.577 and 0.193 ppm, respectively. Mixed biofilms of 11 pure axenic cultures of MnOB isolated and identified from both the SS biofilms were used for MIC studies on SS. Electrochemical studies showed four orders of magnitude high i values (1.271 × 10 A.cm) and the onset of crevice corrosion potentials (502 mV) confirming the localized corrosion of AISI 202 and 316L, respectively, under MnOB biofilms. X-ray photoelectron spectroscopic (XPS) analysis on biotic surfaces showed a reduced Mn content from 10.1 to 7.9 atom.% confirming the Mn oxidation in AISI 202. This study confirms that MnOB biofilms on the SS surfaces can lead to MIC due to biogenic Mn oxidation, depletion of Fe and Mn content, and enrichment of Cr content.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s13205-023-03845-z.

摘要

未标注

在本研究中,我们研究了在存在锰氧化生物膜的情况下,AISI 316L(含1 - 2%锰)和AISI 202(含8 - 12%锰)的微生物影响腐蚀(MIC)。对两种不锈钢材料在海水中暴露两个月后表面形成的生物膜进行微生物学和16S rRNA扩增子测序分析,结果显示存在主要的锰氧化细菌(MnOB)群体。在AISI 202和316L上形成的生物膜中的锰含量分别为0.577 ppm和0.193 ppm。从两种不锈钢生物膜中分离并鉴定出的11种纯无菌MnOB培养物的混合生物膜用于不锈钢的MIC研究。电化学研究表明,i值高四个数量级(1.271×10 A.cm),且缝隙腐蚀电位起始值为502 mV,分别证实了在MnOB生物膜下AISI 202和316L发生了局部腐蚀。对生物表面的X射线光电子能谱(XPS)分析表明,AISI 202中锰含量从10.1原子%降至7.9原子%,证实了锰的氧化。本研究证实,不锈钢表面的MnOB生物膜可因生物成因的锰氧化、铁和锰含量的消耗以及铬含量的富集而导致微生物影响腐蚀。

补充信息

在线版本包含可在10.1007/s13205 - 023 - 03845 - z获取的补充材料。

相似文献

1
Microbiologically influenced corrosion of AISI 202 and 316L stainless steels under manganese-oxidizing biofilms.
3 Biotech. 2024 Jan;14(1):12. doi: 10.1007/s13205-023-03845-z. Epub 2023 Dec 13.
3
Experimental investigation of microbiologically influenced corrosion of selected steels in sugarcane juice environment.
World J Microbiol Biotechnol. 2013 Dec;29(12):2353-7. doi: 10.1007/s11274-013-1402-5. Epub 2013 Jun 14.
4
Corrosion behavior of high nitrogen nickel-free austenitic stainless steel in the presence of artificial saliva and Streptococcus mutans.
Bioelectrochemistry. 2021 Dec;142:107940. doi: 10.1016/j.bioelechem.2021.107940. Epub 2021 Aug 26.
5
Effect of Cu addition to AISI 8630 steel on the resistance to microbial corrosion.
Bioelectrochemistry. 2023 Aug;152:108412. doi: 10.1016/j.bioelechem.2023.108412. Epub 2023 Mar 14.
6
Accelerated Corrosion of 316L Stainless Steel Caused by Biofilms.
ACS Appl Bio Mater. 2020 Apr 20;3(4):2185-2192. doi: 10.1021/acsabm.0c00037. Epub 2020 Apr 9.
8
The impact of alloying element Cu on corrosion and biofilms of 316L stainless steel exposed to seawater.
Environ Sci Pollut Res Int. 2024 Mar;31(12):18842-18855. doi: 10.1007/s11356-024-32354-6. Epub 2024 Feb 14.
9
Austenitic and duplex stainless steels in simulated physiological solution characterized by electrochemical and X-ray photoelectron spectroscopy studies.
J Biomed Mater Res B Appl Biomater. 2012 Apr;100(3):799-807. doi: 10.1002/jbm.b.32513. Epub 2012 Feb 14.
10
Corrosion behavior of 2205 duplex stainless steel.
Am J Orthod Dentofacial Orthop. 1997 Jul;112(1):69-79. doi: 10.1016/s0889-5406(97)70276-2.

本文引用的文献

1
Influence of Acidification and Warming of Seawater on Biofouling by Bacteria Grown over API 5L Steel.
Indian J Microbiol. 2021 Jun;61(2):151-159. doi: 10.1007/s12088-021-00925-7. Epub 2021 Feb 18.
2
A study of bacteria adhesion and microbial corrosion on different stainless steels in environment containing .
R Soc Open Sci. 2021 Jan 13;8(1):201577. doi: 10.1098/rsos.201577. eCollection 2021 Jan.
3
Polydimethylsiloxane-graphene oxide nanocomposite coatings with improved anti-corrosion and anti-biofouling properties.
Environ Sci Pollut Res Int. 2021 Feb;28(6):7404-7422. doi: 10.1007/s11356-020-11068-5. Epub 2020 Oct 8.
4
Novel insights into the taxonomic diversity and molecular mechanisms of bacterial Mn(III) reduction.
Environ Microbiol Rep. 2020 Oct;12(5):583-593. doi: 10.1111/1758-2229.12867. Epub 2020 Aug 16.
5
Portraying manganese biofilms a merger of EPR spectroscopy and cathodic polarization.
Biofouling. 2019 Aug;35(7):768-784. doi: 10.1080/08927014.2019.1658747. Epub 2019 Sep 18.
6
Characterization of manganese oxidation by Brevibacillus at different ecological conditions.
Chemosphere. 2018 Aug;205:553-558. doi: 10.1016/j.chemosphere.2018.04.130. Epub 2018 Apr 23.
9
16S rRNA gene sequencing on a benchtop sequencer: accuracy for identification of clinically important bacteria.
J Appl Microbiol. 2017 Dec;123(6):1584-1596. doi: 10.1111/jam.13590. Epub 2017 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验