Suppr超能文献

工程化抗病毒传感器靶向感染的蚊子。

Engineered Antiviral Sensor Targets Infected Mosquitoes.

机构信息

Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA.

CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Australia.

出版信息

CRISPR J. 2023 Dec;6(6):543-556. doi: 10.1089/crispr.2023.0056.

Abstract

Escalating vector disease burdens pose significant global health risks, as such innovative tools for targeting mosquitoes are critical. CRISPR-Cas technologies have played a crucial role in developing powerful tools for genome manipulation in various eukaryotic organisms. Although considerable efforts have focused on utilizing class II type II CRISPR-Cas9 systems for DNA targeting, these modalities are unable to target RNA molecules, limiting their utility against RNA viruses. Recently, the Cas13 family has emerged as an efficient tool for RNA targeting; however, the application of this technique in mosquitoes, particularly , has yet to be fully realized. In this study, we engineered an antiviral strategy termed REAPER (vRNA Expression Activates Poisonous Effector Ribonuclease) that leverages the programmable RNA-targeting capabilities of CRISPR-Cas13 and its potent collateral activity. REAPER remains concealed within the mosquito until an infectious blood meal is uptaken. Upon target viral RNA infection, REAPER activates, triggering programmed destruction of its target arbovirus such as chikungunya. Consequently, Cas13-mediated RNA targeting significantly reduces viral replication and viral prevalence of infection, and its promiscuous collateral activity can even kill infected mosquitoes within a few days. This innovative REAPER technology adds to an arsenal of effective molecular genetic tools to combat mosquito virus transmission.

摘要

不断升级的病媒传播疾病给全球健康带来了重大风险,因此针对蚊子的创新工具至关重要。CRISPR-Cas 技术在开发针对各种真核生物基因组操作的强大工具方面发挥了关键作用。尽管人们已经投入了相当大的努力来利用 II 类 CRISPR-Cas9 系统进行 DNA 靶向,但这些方法无法靶向 RNA 分子,限制了它们在对抗 RNA 病毒方面的应用。最近,Cas13 家族已成为一种有效的 RNA 靶向工具;然而,该技术在蚊子中的应用尚未得到充分实现。在这项研究中,我们设计了一种名为 REAPER(vRNA Expression Activates Poisonous Effector Ribonuclease)的抗病毒策略,利用了 CRISPR-Cas13 的可编程 RNA 靶向能力及其强大的附带活性。REAPER 在蚊子体内处于潜伏状态,直到摄入了感染性的血液餐。一旦目标病毒 RNA 感染,REAPER 就会被激活,引发对其目标虫媒病毒(如基孔肯雅热病毒)的程序性破坏。因此,Cas13 介导的 RNA 靶向显著降低了病毒复制和感染的病毒流行率,其杂乱无章的附带活性甚至可以在几天内杀死感染的蚊子。这项创新的 REAPER 技术增加了一系列有效的分子遗传工具,以对抗蚊子传播的病毒。

相似文献

1
Engineered Antiviral Sensor Targets Infected Mosquitoes.
CRISPR J. 2023 Dec;6(6):543-556. doi: 10.1089/crispr.2023.0056.
2
Engineered Antiviral Sensor Targets Infected Mosquitoes.
bioRxiv. 2023 Jan 27:2023.01.27.525922. doi: 10.1101/2023.01.27.525922.
3
Differential Transmission of Antiviral Drug-Resistant Chikungunya Viruses by Mosquitoes.
mSphere. 2018 Aug 22;3(4):e00230-18. doi: 10.1128/mSphere.00230-18.
8
Applications of CRISPR/Cas13-Based RNA Editing in Plants.
Cells. 2022 Aug 27;11(17):2665. doi: 10.3390/cells11172665.
9

引用本文的文献

1
Manipulation of a New Non-model Insect Genome Using Targeted CRISPR-Era Approaches.
Methods Mol Biol. 2025;2935:335-384. doi: 10.1007/978-1-0716-4583-3_15.
4
SYNCAS based CRISPR-Cas9 gene editing in predatory mites, whiteflies and stinkbugs.
Insect Biochem Mol Biol. 2025 Feb;177:104232. doi: 10.1016/j.ibmb.2024.104232. Epub 2024 Nov 28.
5
CRISPR-Cas13-mediated RNA editing in the silkworm .
Zool Res. 2024 Nov 18;45(6):1249-1260. doi: 10.24272/j.issn.2095-8137.2024.105.
6
Gene editing in agricultural, health, and veterinary pest arthropods: recent advances.
Curr Opin Insect Sci. 2024 Oct;65:101235. doi: 10.1016/j.cois.2024.101235. Epub 2024 Jul 15.
7
The Perpetual Vector Mosquito Threat and Its Eco-Friendly Nemeses.
Biology (Basel). 2024 Mar 12;13(3):182. doi: 10.3390/biology13030182.
8
Targeting sex determination to suppress mosquito populations.
Elife. 2024 Jan 30;12:RP90199. doi: 10.7554/eLife.90199.
9
Advances and challenges in synthetic biology for mosquito control.
Trends Parasitol. 2024 Jan;40(1):75-88. doi: 10.1016/j.pt.2023.11.001. Epub 2023 Nov 24.

本文引用的文献

1
The collateral activity of RfxCas13d can induce lethality in a RfxCas13d knock-in mouse model.
Genome Biol. 2023 Feb 1;24(1):20. doi: 10.1186/s13059-023-02860-w.
2
A CRISPR endonuclease gene drive reveals distinct mechanisms of inheritance bias.
Nat Commun. 2022 Nov 21;13(1):7145. doi: 10.1038/s41467-022-34739-y.
3
The double life of CRISPR-Cas13.
Curr Opin Biotechnol. 2022 Dec;78:102789. doi: 10.1016/j.copbio.2022.102789. Epub 2022 Sep 14.
4
CRISPR-Mediated Genome Engineering in Aedes aegypti.
Methods Mol Biol. 2022;2509:23-51. doi: 10.1007/978-1-0716-2380-0_2.
5
Intron-derived small RNAs for silencing viral RNAs in mosquito cells.
PLoS Negl Trop Dis. 2022 Jun 23;16(6):e0010548. doi: 10.1371/journal.pntd.0010548. eCollection 2022 Jun.
6
CRISPR-CasRx knock-in mice for RNA degradation.
Sci China Life Sci. 2022 Nov;65(11):2248-2256. doi: 10.1007/s11427-021-2059-5. Epub 2022 Apr 7.
7
Transgenic refractory Aedes aegypti lines are resistant to multiple serotypes of dengue virus.
Sci Rep. 2021 Dec 13;11(1):23865. doi: 10.1038/s41598-021-03229-4.
8
Development of a Rapid and Sensitive CasRx-Based Diagnostic Assay for SARS-CoV-2.
ACS Sens. 2021 Nov 26;6(11):3957-3966. doi: 10.1021/acssensors.1c01088. Epub 2021 Oct 29.
9
Suppressing mosquito populations with precision guided sterile males.
Nat Commun. 2021 Sep 10;12(1):5374. doi: 10.1038/s41467-021-25421-w.
10
Efficient RNA Virus Targeting via CRISPR/CasRx in Fish.
J Virol. 2021 Sep 9;95(19):e0046121. doi: 10.1128/JVI.00461-21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验