Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06511, USA.
Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, USA, MD , 20815.
Genome Biol. 2023 Dec 18;24(1):292. doi: 10.1186/s13059-023-03129-y.
Many deep learning-based methods have been proposed to handle complex single-cell data. Deep learning approaches may also prove useful to jointly analyze single-cell RNA sequencing (scRNA-seq) and single-cell T cell receptor sequencing (scTCR-seq) data for novel discoveries. We developed scNAT, a deep learning method that integrates paired scRNA-seq and scTCR-seq data to represent data in a unified latent space for downstream analysis. We demonstrate that scNAT is capable of removing batch effects, and identifying cell clusters and a T cell migration trajectory from blood to cerebrospinal fluid in multiple sclerosis.
许多基于深度学习的方法已被提出,以处理复杂的单细胞数据。深度学习方法也可能有助于联合分析单细胞 RNA 测序(scRNA-seq)和单细胞 T 细胞受体测序(scTCR-seq)数据,以实现新的发现。我们开发了 scNAT,这是一种深度学习方法,它可以整合配对的 scRNA-seq 和 scTCR-seq 数据,以便在下游分析中将数据表示为统一的潜在空间。我们证明了 scNAT 能够去除批次效应,并从多发性硬化症患者的血液到脑脊液中识别细胞簇和 T 细胞迁移轨迹。