Suppr超能文献

基于深度自动编码器的单细胞 RNA-seq 数据的非线性原型分析。

Non-linear archetypal analysis of single-cell RNA-seq data by deep autoencoders.

机构信息

Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America.

Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America.

出版信息

PLoS Comput Biol. 2022 Apr 1;18(4):e1010025. doi: 10.1371/journal.pcbi.1010025. eCollection 2022 Apr.

Abstract

Advances in single-cell RNA sequencing (scRNA-seq) have led to successes in discovering novel cell types and understanding cellular heterogeneity among complex cell populations through cluster analysis. However, cluster analysis is not able to reveal continuous spectrum of states and underlying gene expression programs (GEPs) shared across cell types. We introduce scAAnet, an autoencoder for single-cell non-linear archetypal analysis, to identify GEPs and infer the relative activity of each GEP across cells. We use a count distribution-based loss term to account for the sparsity and overdispersion of the raw count data and add an archetypal constraint to the loss function of scAAnet. We first show that scAAnet outperforms existing methods for archetypal analysis across different metrics through simulations. We then demonstrate the ability of scAAnet to extract biologically meaningful GEPs using publicly available scRNA-seq datasets including a pancreatic islet dataset, a lung idiopathic pulmonary fibrosis dataset and a prefrontal cortex dataset.

摘要

单细胞 RNA 测序 (scRNA-seq) 的进展通过聚类分析成功地发现了新的细胞类型,并深入了解了复杂细胞群体中的细胞异质性。然而,聚类分析无法揭示不同细胞类型之间共享的连续状态和潜在的基因表达程序 (GEP)。我们引入了 scAAnet,这是一种用于单细胞非线性原型分析的自动编码器,用于识别 GEP 并推断每个 GEP 在细胞中的相对活性。我们使用基于计数分布的损失项来解释原始计数数据的稀疏性和过分散,并在 scAAnet 的损失函数中添加原型约束。我们首先通过模拟展示了 scAAnet 在不同指标上的原型分析性能优于现有方法。然后,我们使用包括胰岛数据集、肺特发性肺纤维化数据集和前额叶皮层数据集在内的公开 scRNA-seq 数据集展示了 scAAnet 提取生物学意义上的 GEP 的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a903/9007392/465d9d93e8e9/pcbi.1010025.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验