Suppr超能文献

I 期和 II 期临床试验中的风险-效益权衡和精准效用。

Risk-benefit trade-offs and precision utilities in phase I-II clinical trials.

机构信息

Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Clin Trials. 2024 Jun;21(3):287-297. doi: 10.1177/17407745231214750. Epub 2023 Dec 18.

Abstract

BACKGROUND

Identifying optimal doses in early-phase clinical trials is critically important. Therapies administered at doses that are either unsafe or biologically ineffective are unlikely to be successful in subsequent clinical trials or to obtain regulatory approval. Identifying appropriate doses for new agents is a complex process that involves balancing the risks and benefits of outcomes such as biological efficacy, toxicity, and patient quality of life.

PURPOSE

While conventional phase I trials rely solely on toxicity to determine doses, phase I-II trials explicitly account for both efficacy and toxicity, which enables them to identify doses that provide the most favorable risk-benefit trade-offs. It is also important to account for patient covariates, since one-size-fits-all treatment decisions are likely to be suboptimal within subgroups determined by prognostic variables or biomarkers. Notably, the selection of estimands can influence our conclusions based on the prognostic subgroup studied. For example, assuming monotonicity of the probability of response, higher treatment doses may yield more pronounced efficacy in favorable prognosis compared to poor prognosis subgroups when the estimand is mean or median survival. Conversely, when the estimand is the 3-month survival probability, higher treatment doses produce more pronounced efficacy in poor prognosis compared to favorable prognosis subgroups.

METHODS AND CONCLUSIONS

Herein, we first describe why it is essential to consider clinical practice when designing a clinical trial and outline a stepwise process for doing this. We then review a precision phase I-II design based on utilities tailored to prognostic subgroups that characterize efficacy-toxicity risk-benefit trade-offs. The design chooses each patient's dose to optimize their expected utility and allows patients in different prognostic subgroups to have different optimal doses. We illustrate the design with a dose-finding trial of a new therapeutic agent for metastatic clear cell renal cell carcinoma.

摘要

背景

在早期临床试验中确定最佳剂量至关重要。在不安全或生物学无效的剂量下给药的疗法不太可能在后续临床试验中成功,也不太可能获得监管部门的批准。为新药物确定合适的剂量是一个复杂的过程,需要平衡生物疗效、毒性和患者生活质量等结果的风险和益处。

目的

虽然传统的 I 期临床试验仅依赖于毒性来确定剂量,但 I 期-II 期临床试验明确考虑了疗效和毒性,这使它们能够确定提供最佳风险-效益权衡的剂量。考虑患者协变量也很重要,因为一刀切的治疗决策在由预后变量或生物标志物确定的亚组内可能不太理想。值得注意的是,选择估计量可以根据所研究的预后亚组影响我们基于该亚组的结论。例如,假设反应概率的单调性,当估计量为平均或中位数生存时间时,与预后较差的亚组相比,较高的治疗剂量可能在预后较好的亚组中产生更明显的疗效。相反,当估计量为 3 个月生存率时,与预后较好的亚组相比,较高的治疗剂量在预后较差的亚组中产生更明显的疗效。

方法和结论

本文首先描述了为什么在设计临床试验时考虑临床实践至关重要,并概述了这样做的逐步过程。然后,我们回顾了一种基于适用于预后亚组的效用的精准 I 期-II 期设计,这些亚组可以描述疗效-毒性风险-效益权衡。该设计选择每个患者的剂量以优化其预期效用,并允许不同预后亚组的患者具有不同的最佳剂量。我们用一种新的治疗转移性透明细胞肾细胞癌的治疗药物的剂量发现试验来说明该设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7147/11134979/0c8412098233/10.1177_17407745231214750-fig1.jpg

相似文献

1
Risk-benefit trade-offs and precision utilities in phase I-II clinical trials.
Clin Trials. 2024 Jun;21(3):287-297. doi: 10.1177/17407745231214750. Epub 2023 Dec 18.
2
Precision Bayesian phase I-II dose-finding based on utilities tailored to prognostic subgroups.
Stat Med. 2021 Oct 30;40(24):5199-5217. doi: 10.1002/sim.9120. Epub 2021 Jul 9.
3
Phase I-II clinical trial design: a state-of-the-art paradigm for dose finding.
Ann Oncol. 2018 Mar 1;29(3):694-699. doi: 10.1093/annonc/mdx795.
5
Practice and progress in kidney cancer: methodology for novel drug development.
J Urol. 2004 Jun;171(6 Pt 1):2115-21. doi: 10.1097/01.ju.0000113728.46439.02.
6
Bayesian cancer clinical trial designs with subgroup-specific decisions.
Contemp Clin Trials. 2020 Mar;90:105860. doi: 10.1016/j.cct.2019.105860. Epub 2019 Oct 31.
8
Application of Bayesian hierarchical models for phase I/II clinical trials in oncology.
Pharm Stat. 2017 Mar;16(2):114-121. doi: 10.1002/pst.1793. Epub 2016 Nov 28.
9
uTPI: A utility-based toxicity probability interval design for phase I/II dose-finding trials.
Stat Med. 2021 May 20;40(11):2626-2649. doi: 10.1002/sim.8922. Epub 2021 Mar 2.
10
Adaptive phase I-II clinical trial designs identifying optimal biological doses for targeted agents and immunotherapies.
Clin Trials. 2024 Jun;21(3):298-307. doi: 10.1177/17407745231220661. Epub 2024 Jan 11.

引用本文的文献

1
Estimands in clinical trials of complex disease processes.
Clin Trials. 2024 Oct;21(5):604-611. doi: 10.1177/17407745241268054. Epub 2024 Aug 24.

本文引用的文献

1
Estimand in benefit-risk assessment.
J Biopharm Stat. 2023 Jul 4;33(4):452-465. doi: 10.1080/10543406.2023.2170396. Epub 2023 Feb 8.
2
Utility-based Bayesian personalized treatment selection for advanced breast cancer.
J R Stat Soc Ser C Appl Stat. 2022 Nov;71(5):1605-1622. doi: 10.1111/rssc.12582. Epub 2022 Sep 9.
3
A Causal Framework for Making Individualized Treatment Decisions in Oncology.
Cancers (Basel). 2022 Aug 14;14(16):3923. doi: 10.3390/cancers14163923.
4
Bayesian treatment screening and selection using subgroup-specific utilities of response and toxicity.
Biometrics. 2023 Sep;79(3):2458-2473. doi: 10.1111/biom.13738. Epub 2022 Sep 19.
5
Missing the trees for the forest: most subgroup analyses using forest plots at the ASCO annual meeting are inconclusive.
Ther Adv Med Oncol. 2022 Jun 1;14:17588359221103199. doi: 10.1177/17588359221103199. eCollection 2022.
6
The Big Data Paradox in Clinical Practice.
Cancer Invest. 2022 Aug;40(7):567-576. doi: 10.1080/07357907.2022.2084621. Epub 2022 Jun 8.
7
Evolving Role of Adjuvant Systemic Therapy for Kidney and Urothelial Cancers.
Am Soc Clin Oncol Educ Book. 2022 Apr;42:1-16. doi: 10.1200/EDBK_350829.
9
Precision Bayesian phase I-II dose-finding based on utilities tailored to prognostic subgroups.
Stat Med. 2021 Oct 30;40(24):5199-5217. doi: 10.1002/sim.9120. Epub 2021 Jul 9.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验