Liu Tiefeng, Heimonen Johanna, Zhang Qilun, Yang Chi-Yuan, Huang Jun-Da, Wu Han-Yan, Stoeckel Marc-Antoine, van der Pol Tom P A, Li Yuxuan, Jeong Sang Young, Marks Adam, Wang Xin-Yi, Puttisong Yuttapoom, Shimolo Asaminew Y, Liu Xianjie, Zhang Silan, Li Qifan, Massetti Matteo, Chen Weimin M, Woo Han Young, Pei Jian, McCulloch Iain, Gao Feng, Fahlman Mats, Kroon Renee, Fabiano Simone
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden.
Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping, Sweden.
Nat Commun. 2023 Dec 20;14(1):8454. doi: 10.1038/s41467-023-44153-7.
Water-based conductive inks are vital for the sustainable manufacturing and widespread adoption of organic electronic devices. Traditional methods to produce waterborne conductive polymers involve modifying their backbone with hydrophilic side chains or using surfactants to form and stabilize aqueous nanoparticle dispersions. However, these chemical approaches are not always feasible and can lead to poor material/device performance. Here, we demonstrate that ground-state electron transfer (GSET) between donor and acceptor polymers allows the processing of water-insoluble polymers from water. This approach enables macromolecular charge-transfer salts with 10,000× higher electrical conductivities than pristine polymers, low work function, and excellent thermal/solvent stability. These waterborne conductive films have technological implications for realizing high-performance organic solar cells, with efficiency and stability superior to conventional metal oxide electron transport layers, and organic electrochemical neurons with biorealistic firing frequency. Our findings demonstrate that GSET offers a promising avenue to develop water-based conductive inks for various applications in organic electronics.
水性导电油墨对于有机电子器件的可持续制造和广泛应用至关重要。生产水性导电聚合物的传统方法包括用亲水性侧链修饰其主链或使用表面活性剂来形成和稳定水性纳米颗粒分散体。然而,这些化学方法并不总是可行的,并且可能导致材料/器件性能不佳。在此,我们证明供体和受体聚合物之间的基态电子转移(GSET)允许从水中加工水不溶性聚合物。这种方法能够制备出具有比原始聚合物高10000倍电导率、低功函数以及优异热稳定性/溶剂稳定性的大分子电荷转移盐。这些水性导电薄膜对于实现高性能有机太阳能电池具有技术意义,其效率和稳定性优于传统金属氧化物电子传输层,并且对于具有生物逼真放电频率的有机电化学神经元也具有技术意义。我们的研究结果表明,GSET为开发用于有机电子学各种应用的水性导电油墨提供了一条有前景的途径。