Suppr超能文献

用于活动识别的、带有注意力机制以及挤压与激励模块的长短期记忆网络(LSTM)模型的比较分析。

A comparative analysis of LSTM models aided with attention and squeeze and excitation blocks for activity recognition.

作者信息

Khan Murad, Hossni Yousef

机构信息

Kuwait College of Science and Technology, Doha District, Kuwait.

出版信息

Sci Rep. 2025 Jan 31;15(1):3858. doi: 10.1038/s41598-025-88378-6.

Abstract

Human Activity Recognition plays a vital role in various fields, such as healthcare and smart environments. Traditional HAR methods rely on sensor or video data, but sensor-based systems have gained popularity due to their non-intrusive nature. Current challenges in HAR systems include variability in sensor data influenced by factors like sensor placement, user differences, and environmental conditions. Additionally, imbalanced datasets and computational complexity hinder the performance of these systems in real-world applications. To address these challenges, this paper proposes an LSTM-based HAR model enhanced with attention and squeeze-and-excitation blocks. The LSTM captures temporal dependencies, while the attention mechanism dynamically focuses on important parts of the input sequence. The squeeze-and-excitation block recalibrates channel-wise feature importance, allowing the model to emphasize the most informative features. The proposed model demonstrated a 99% accuracy rate, showcasing its effectiveness in recognizing various activities from sensor data. The integration of attention and squeeze-and-excitation mechanisms further boosted the model's ability to handle complex datasets. Comparative analysis with existing LSTM models confirms that the proposed approach improves accuracy and reduces computational complexity, making it a highly suitable model for real-world applications.

摘要

人类活动识别在医疗保健和智能环境等各个领域发挥着至关重要的作用。传统的人类活动识别方法依赖于传感器或视频数据,但基于传感器的系统因其非侵入性的特点而受到欢迎。人类活动识别系统当前面临的挑战包括传感器数据的变异性,这受到传感器放置、用户差异和环境条件等因素的影响。此外,数据集不平衡和计算复杂性阻碍了这些系统在实际应用中的性能。为应对这些挑战,本文提出了一种基于长短期记忆网络(LSTM)的人类活动识别模型,并通过注意力机制和挤压激励模块进行了增强。长短期记忆网络捕捉时间依赖性,而注意力机制动态聚焦于输入序列的重要部分。挤压激励模块重新校准通道维度上的特征重要性,使模型能够突出最具信息量的特征。所提出的模型展示了99%的准确率,证明了其在从传感器数据中识别各种活动方面的有效性。注意力机制和挤压激励机制的整合进一步提升了模型处理复杂数据集的能力。与现有长短期记忆网络模型的对比分析证实,所提出的方法提高了准确率并降低了计算复杂性,使其成为实际应用中非常合适的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d05/11785954/a01e7c7b7e93/41598_2025_88378_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验