文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 OCT 图像的视网膜病变分类中应用的子波散射变换。

Wavelet scattering transform application in classification of retinal abnormalities using OCT images.

机构信息

Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Institute for Numerical and Applied Mathematics, Georg-August-University of Goettingen, Göttingen, Germany.

出版信息

Sci Rep. 2023 Nov 3;13(1):19013. doi: 10.1038/s41598-023-46200-1.


DOI:10.1038/s41598-023-46200-1
PMID:37923770
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10624695/
Abstract

To assist ophthalmologists in diagnosing retinal abnormalities, Computer Aided Diagnosis has played a significant role. In this paper, a particular Convolutional Neural Network based on Wavelet Scattering Transform (WST) is used to detect one to four retinal abnormalities from Optical Coherence Tomography (OCT) images. Predefined wavelet filters in this network decrease the computation complexity and processing time compared to deep learning methods. We use two layers of the WST network to obtain a direct and efficient model. WST generates a sparse representation of the images which is translation-invariant and stable concerning local deformations. Next, a Principal Component Analysis classifies the extracted features. We evaluate the model using four publicly available datasets to have a comprehensive comparison with the literature. The accuracies of classifying the OCT images of the OCTID dataset into two and five classes were [Formula: see text] and [Formula: see text], respectively. We achieved an accuracy of [Formula: see text] in detecting Diabetic Macular Edema from Normal ones using the TOPCON device-based dataset. Heidelberg and Duke datasets contain DME, Age-related Macular Degeneration, and Normal classes, in which we achieved accuracy of [Formula: see text] and [Formula: see text], respectively. A comparison of our results with the state-of-the-art models shows that our model outperforms these models for some assessments or achieves nearly the best results reported so far while having a much smaller computational complexity.

摘要

为了协助眼科医生诊断视网膜异常,计算机辅助诊断发挥了重要作用。在本文中,我们使用了一种基于小波散射变换(WST)的特定卷积神经网络来从光学相干断层扫描(OCT)图像中检测一到四种视网膜异常。与深度学习方法相比,该网络中预定义的小波滤波器降低了计算复杂度和处理时间。我们使用两层 WST 网络来获得一个直接且高效的模型。WST 对图像进行稀疏表示,该表示具有平移不变性且对局部变形具有稳定性。接下来,主成分分析对提取的特征进行分类。我们使用四个公开可用的数据集来评估模型,以便与文献进行全面比较。OCTID 数据集的 OCT 图像分为两类和五类的准确率分别为[Formula: see text]和[Formula: see text]。我们使用基于 TOPCON 设备的数据集实现了从正常 OCT 图像中检测糖尿病性黄斑水肿的准确率为[Formula: see text]。海德堡和杜克数据集包含 DME、年龄相关性黄斑变性和正常类别,我们在这些数据集中的准确率分别为[Formula: see text]和[Formula: see text]。将我们的结果与最先进的模型进行比较表明,我们的模型在某些评估中优于这些模型,或者在计算复杂度小得多的情况下达到了迄今为止报告的最佳结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e52/10624695/10ea2d0ec8b7/41598_2023_46200_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e52/10624695/5f759a777739/41598_2023_46200_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e52/10624695/61ce3fcf558a/41598_2023_46200_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e52/10624695/672593386bc2/41598_2023_46200_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e52/10624695/b78b2ad69c16/41598_2023_46200_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e52/10624695/927e3f8869cf/41598_2023_46200_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e52/10624695/5f73998ddb64/41598_2023_46200_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e52/10624695/32a169e72a27/41598_2023_46200_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e52/10624695/10ea2d0ec8b7/41598_2023_46200_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e52/10624695/5f759a777739/41598_2023_46200_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e52/10624695/61ce3fcf558a/41598_2023_46200_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e52/10624695/672593386bc2/41598_2023_46200_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e52/10624695/b78b2ad69c16/41598_2023_46200_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e52/10624695/927e3f8869cf/41598_2023_46200_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e52/10624695/5f73998ddb64/41598_2023_46200_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e52/10624695/32a169e72a27/41598_2023_46200_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e52/10624695/10ea2d0ec8b7/41598_2023_46200_Fig8_HTML.jpg

相似文献

[1]
Wavelet scattering transform application in classification of retinal abnormalities using OCT images.

Sci Rep. 2023-11-3

[2]
Detection of Retinal Abnormalities in OCT Images Using Wavelet Scattering Network.

Annu Int Conf IEEE Eng Med Biol Soc. 2022-7

[3]
A new intelligent system based deep learning to detect DME and AMD in OCT images.

Int Ophthalmol. 2024-4-23

[4]
Fully automated macular pathology detection in retina optical coherence tomography images using sparse coding and dictionary learning.

J Biomed Opt. 2017-1-1

[5]
Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier.

J Biomed Opt. 2018-3

[6]
Elastic Deformation of Optical Coherence Tomography Images of Diabetic Macular Edema for Deep-Learning Models Training: How Far to Go?

IEEE J Transl Eng Health Med. 2023

[7]
Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography.

Comput Methods Programs Biomed. 2019-6-14

[8]
Automatic detection of retinal regions using fully convolutional networks for diagnosis of abnormal maculae in optical coherence tomography images.

J Biomed Opt. 2019-5

[9]
UD-MIL: Uncertainty-Driven Deep Multiple Instance Learning for OCT Image Classification.

IEEE J Biomed Health Inform. 2020-12

[10]
Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT images.

Biomed Eng Online. 2017-6-7

引用本文的文献

[1]
Wavelet-based compression method for scale-preserving in VNIR and SWIR hyperspectral data.

J Med Imaging (Bellingham). 2025-7

[2]
Unsupervised machine learning analysis of optical coherence tomography radiomics features for predicting treatment outcomes in diabetic macular edema.

Sci Rep. 2025-4-18

[3]
Wavelet-Based Compression Method for Scale-Preserving SWIR Hyperspectral Data.

medRxiv. 2025-2-6

[4]
A Low Complexity Efficient Deep Learning Model for Automated Retinal Disease Diagnosis.

J Healthc Inform Res. 2025-1-3

[5]
Distributed training of foundation models for ophthalmic diagnosis.

Commun Eng. 2025-1-22

[6]
Recent advances in the application of artificial intelligence in age-related macular degeneration.

BMJ Open Ophthalmol. 2024-11-13

[7]
Stitched vision transformer for age-related macular degeneration detection using retinal optical coherence tomography images.

PLoS One. 2024

[8]
A new convolutional neural network based on combination of circlets and wavelets for macular OCT classification.

Sci Rep. 2023-12-19

本文引用的文献

[1]
Deep Learning Algorithm Detects Presence of Disorganization of Retinal Inner Layers (DRIL)-An Early Imaging Biomarker in Diabetic Retinopathy.

Transl Vis Sci Technol. 2023-7-3

[2]
Relationship between Full-Thickness Macular Hole Onset and Posterior Vitreous Detachment: .

Ophthalmol Sci. 2023-5-26

[3]
Performance of retinal fluid monitoring in OCT imaging by automated deep learning versus human expert grading in neovascular AMD.

Eye (Lond). 2023-12

[4]
OCTFormer: A retinal OCT-angiography vessel segmentation transformer.

Comput Methods Programs Biomed. 2023-5

[5]
Retinal structural and microvascular changes in myelin oligodendrocyte glycoprotein antibody disease and neuromyelitis optica spectrum disorder: An OCT/OCTA study.

Front Immunol. 2023

[6]
Deep ensemble learning for automated non-advanced AMD classification using optimized retinal layer segmentation and SD-OCT scans.

Comput Biol Med. 2023-3

[7]
Deep segmentation of OCTA for evaluation and association of changes of retinal microvasculature with Alzheimer's disease and mild cognitive impairment.

Br J Ophthalmol. 2024-2-21

[8]
Detection of Diabetic Retinopathy Using Extracted 3D Features from OCT Images.

Sensors (Basel). 2022-10-15

[9]
Detection of Retinal Abnormalities in OCT Images Using Wavelet Scattering Network.

Annu Int Conf IEEE Eng Med Biol Soc. 2022-7

[10]
Automated machine learning-based classification of proliferative and non-proliferative diabetic retinopathy using optical coherence tomography angiography vascular density maps.

Graefes Arch Clin Exp Ophthalmol. 2023-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索