Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Institute for Numerical and Applied Mathematics, Georg-August-University of Goettingen, Göttingen, Germany.
Sci Rep. 2023 Nov 3;13(1):19013. doi: 10.1038/s41598-023-46200-1.
To assist ophthalmologists in diagnosing retinal abnormalities, Computer Aided Diagnosis has played a significant role. In this paper, a particular Convolutional Neural Network based on Wavelet Scattering Transform (WST) is used to detect one to four retinal abnormalities from Optical Coherence Tomography (OCT) images. Predefined wavelet filters in this network decrease the computation complexity and processing time compared to deep learning methods. We use two layers of the WST network to obtain a direct and efficient model. WST generates a sparse representation of the images which is translation-invariant and stable concerning local deformations. Next, a Principal Component Analysis classifies the extracted features. We evaluate the model using four publicly available datasets to have a comprehensive comparison with the literature. The accuracies of classifying the OCT images of the OCTID dataset into two and five classes were [Formula: see text] and [Formula: see text], respectively. We achieved an accuracy of [Formula: see text] in detecting Diabetic Macular Edema from Normal ones using the TOPCON device-based dataset. Heidelberg and Duke datasets contain DME, Age-related Macular Degeneration, and Normal classes, in which we achieved accuracy of [Formula: see text] and [Formula: see text], respectively. A comparison of our results with the state-of-the-art models shows that our model outperforms these models for some assessments or achieves nearly the best results reported so far while having a much smaller computational complexity.
为了协助眼科医生诊断视网膜异常,计算机辅助诊断发挥了重要作用。在本文中,我们使用了一种基于小波散射变换(WST)的特定卷积神经网络来从光学相干断层扫描(OCT)图像中检测一到四种视网膜异常。与深度学习方法相比,该网络中预定义的小波滤波器降低了计算复杂度和处理时间。我们使用两层 WST 网络来获得一个直接且高效的模型。WST 对图像进行稀疏表示,该表示具有平移不变性且对局部变形具有稳定性。接下来,主成分分析对提取的特征进行分类。我们使用四个公开可用的数据集来评估模型,以便与文献进行全面比较。OCTID 数据集的 OCT 图像分为两类和五类的准确率分别为[Formula: see text]和[Formula: see text]。我们使用基于 TOPCON 设备的数据集实现了从正常 OCT 图像中检测糖尿病性黄斑水肿的准确率为[Formula: see text]。海德堡和杜克数据集包含 DME、年龄相关性黄斑变性和正常类别,我们在这些数据集中的准确率分别为[Formula: see text]和[Formula: see text]。将我们的结果与最先进的模型进行比较表明,我们的模型在某些评估中优于这些模型,或者在计算复杂度小得多的情况下达到了迄今为止报告的最佳结果。
Annu Int Conf IEEE Eng Med Biol Soc. 2022-7
Int Ophthalmol. 2024-4-23
IEEE J Transl Eng Health Med. 2023
Comput Methods Programs Biomed. 2019-6-14
IEEE J Biomed Health Inform. 2020-12
Biomed Eng Online. 2017-6-7
J Med Imaging (Bellingham). 2025-7
J Healthc Inform Res. 2025-1-3
Commun Eng. 2025-1-22
BMJ Open Ophthalmol. 2024-11-13
Ophthalmol Sci. 2023-5-26
Comput Methods Programs Biomed. 2023-5
Sensors (Basel). 2022-10-15
Annu Int Conf IEEE Eng Med Biol Soc. 2022-7