Suppr超能文献

通过智能实时虚拟iOCT体积切片实现视网膜下注射的机器人导航自主系统。

Robotic Navigation Autonomy for Subretinal Injection via Intelligent Real-Time Virtual iOCT Volume Slicing.

作者信息

Dehghani Shervin, Sommersperger Michael, Zhang Peiyao, Martin-Gomez Alejandro, Busam Benjamin, Gehlbach Peter, Navab Nassir, Nasseri M Ali, Iordachita Iulian

机构信息

Department of Computer Science, Technische Universität München, München 85748 Germany.

Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA.

出版信息

IEEE Int Conf Robot Autom. 2023 May-Jun;2023:4724-4731. doi: 10.1109/icra48891.2023.10160372. Epub 2023 Jul 4.

Abstract

In the last decade, various robotic platforms have been introduced that could support delicate retinal surgeries. Concurrently, to provide semantic understanding of the surgical area, recent advances have enabled microscope-integrated intraoperative Optical Coherent Tomography (iOCT) with high-resolution 3D imaging at near video rate. The combination of robotics and semantic understanding enables task autonomy in robotic retinal surgery, such as for subretinal injection. This procedure requires precise needle insertion for best treatment outcomes. However, merging robotic systems with iOCT introduces new challenges. These include, but are not limited to high demands on data processing rates and dynamic registration of these systems during the procedure. In this work, we propose a framework for autonomous robotic navigation for subretinal injection, based on intelligent real-time processing of iOCT volumes. Our method consists of an instrument pose estimation method, an online registration between the robotic and the iOCT system, and trajectory planning tailored for navigation to an injection target. We also introduce , a volume slicing approach for rapid instrument pose estimation, which is enabled by Convolutional Neural Networks (CNNs). Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method. Finally, we discuss identified challenges in this work and suggest potential solutions to further the development of such systems.

摘要

在过去十年中,已经引入了各种机器人平台,它们可以支持精细的视网膜手术。与此同时,为了提供手术区域的语义理解,最近的进展使得显微镜集成术中光学相干断层扫描(iOCT)能够以接近视频的速率进行高分辨率3D成像。机器人技术和语义理解的结合实现了机器人视网膜手术中的任务自主性,例如视网膜下注射。该手术需要精确的针插入以获得最佳治疗效果。然而,将机器人系统与iOCT相结合带来了新的挑战。这些挑战包括但不限于对数据处理速率的高要求以及在手术过程中这些系统的动态配准。在这项工作中,我们基于iOCT体积的智能实时处理,提出了一种用于视网膜下注射的自主机器人导航框架。我们的方法包括一种器械位姿估计方法、机器人与iOCT系统之间的在线配准以及为导航到注射目标而定制的轨迹规划。我们还介绍了一种通过卷积神经网络(CNN)实现的用于快速器械位姿估计的体积切片方法。我们在离体猪眼上进行的实验证明了该方法的精度和可重复性。最后,我们讨论了这项工作中确定的挑战,并提出了潜在的解决方案,以推动此类系统的进一步发展。

相似文献

1
Robotic Navigation Autonomy for Subretinal Injection via Intelligent Real-Time Virtual iOCT Volume Slicing.
IEEE Int Conf Robot Autom. 2023 May-Jun;2023:4724-4731. doi: 10.1109/icra48891.2023.10160372. Epub 2023 Jul 4.
2
Autonomous Needle Navigation in Subretinal Injections via iOCT.
IEEE Robot Autom Lett. 2024 May;9(5):4154-4161. doi: 10.1109/lra.2024.3375710. Epub 2024 Mar 11.
3
Real-time tool to layer distance estimation for robotic subretinal injection using intraoperative 4D OCT.
Biomed Opt Express. 2021 Jan 27;12(2):1085-1104. doi: 10.1364/BOE.415477. eCollection 2021 Feb 1.
4
iOCT-guided simulated subretinal injections: a comparison between manual and robot-assisted techniques in an ex-vivo porcine model.
J Robot Surg. 2023 Dec;17(6):2735-2742. doi: 10.1007/s11701-023-01699-4. Epub 2023 Sep 5.
5
Towards Autonomous Retinal Microsurgery Using RGB-D Images.
IEEE Robot Autom Lett. 2024 Apr;9(4):3807-3814. doi: 10.1109/lra.2024.3368192. Epub 2024 Feb 21.
6
Surgical scene generation and adversarial networks for physics-based iOCT synthesis.
Biomed Opt Express. 2022 Mar 23;13(4):2414-2430. doi: 10.1364/BOE.454286. eCollection 2022 Apr 1.
7
Intraoperative OCT Features and Postoperative Ellipsoid Mapping in Primary Macula-Involving Retinal Detachments from the PIONEER Study.
Ophthalmol Retina. 2019 Mar;3(3):252-257. doi: 10.1016/j.oret.2018.10.006. Epub 2018 Oct 18.
8
ColibriDoc: An Eye-in-Hand Autonomous Trocar Docking System.
IEEE Int Conf Robot Autom. 2022 May;2022:7717-7723. doi: 10.1109/icra46639.2022.9811364. Epub 2022 Jul 12.
9
Automated stereo vision instrument tracking for intraoperative OCT guided anterior segment ophthalmic surgical maneuvers.
Biomed Opt Express. 2015 Jul 23;6(8):3014-31. doi: 10.1364/BOE.6.003014. eCollection 2015 Aug 1.
10
Automatic intraoperative optical coherence tomography positioning.
Int J Comput Assist Radiol Surg. 2020 May;15(5):781-789. doi: 10.1007/s11548-020-02135-w. Epub 2020 Apr 2.

引用本文的文献

1
Towards Motion Compensation in Autonomous Robotic Subretinal Injections.
Int Symp Med Robot. 2025 May;2025:66-72. doi: 10.1109/ismr67322.2025.11025990. Epub 2025 Jun 13.
3
A Feasible Workflow for Retinal Vein Cannulation in Ex Vivo Porcine Eyes with Robotic Assistance.
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-5. doi: 10.1109/EMBC53108.2024.10781906.
4
Robotics and optical coherence tomography: current works and future perspectives [Invited].
Biomed Opt Express. 2025 Jan 16;16(2):578-602. doi: 10.1364/BOE.547943. eCollection 2025 Feb 1.
5
Artificial Intelligence Applications in Ophthalmology.
JMA J. 2025 Jan 15;8(1):66-75. doi: 10.31662/jmaj.2024-0139. Epub 2024 Sep 13.
6
New Directions for Ophthalmic OCT - Handhelds, Surgery, and Robotics.
Transl Vis Sci Technol. 2025 Jan 2;14(1):14. doi: 10.1167/tvst.14.1.14.
7
Towards Autonomous Retinal Microsurgery Using RGB-D Images.
IEEE Robot Autom Lett. 2024 Apr;9(4):3807-3814. doi: 10.1109/lra.2024.3368192. Epub 2024 Feb 21.
8
Sharper vision, steady hands: can robots improve subretinal drug delivery? Systematic review.
J Robot Surg. 2024 May 31;18(1):235. doi: 10.1007/s11701-024-01991-x.
9
Autonomous Needle Navigation in Subretinal Injections via iOCT.
IEEE Robot Autom Lett. 2024 May;9(5):4154-4161. doi: 10.1109/lra.2024.3375710. Epub 2024 Mar 11.
10
Methods for real-time feature-guided image fusion of intrasurgical volumetric optical coherence tomography with digital microscopy.
Biomed Opt Express. 2023 Jun 13;14(7):3308-3326. doi: 10.1364/BOE.488975. eCollection 2023 Jul 1.

本文引用的文献

1
ColibriDoc: An Eye-in-Hand Autonomous Trocar Docking System.
IEEE Int Conf Robot Autom. 2022 May;2022:7717-7723. doi: 10.1109/icra46639.2022.9811364. Epub 2022 Jul 12.
3
Surgical scene generation and adversarial networks for physics-based iOCT synthesis.
Biomed Opt Express. 2022 Mar 23;13(4):2414-2430. doi: 10.1364/BOE.454286. eCollection 2022 Apr 1.
4
Processing-Aware Real-Time Rendering for Optimized Tissue Visualization in Intraoperative 4D OCT.
Med Image Comput Comput Assist Interv. 2020 Oct;12265:267-276. doi: 10.1007/978-3-030-59722-1_26. Epub 2020 Sep 29.
5
Advantages of robotic assistance over a manual approach in simulated subretinal injections and its relevance for gene therapy.
Gene Ther. 2023 Apr;30(3-4):264-270. doi: 10.1038/s41434-021-00262-w. Epub 2021 May 17.
6
Real-time tool to layer distance estimation for robotic subretinal injection using intraoperative 4D OCT.
Biomed Opt Express. 2021 Jan 27;12(2):1085-1104. doi: 10.1364/BOE.415477. eCollection 2021 Feb 1.
7
Real-time retinal layer segmentation of OCT volumes with GPU accelerated inferencing using a compressed, low-latency neural network.
Biomed Opt Express. 2020 Jun 24;11(7):3968-3984. doi: 10.1364/BOE.395279. eCollection 2020 Jul 1.
8
Stem/progenitor cell-based transplantation for retinal degeneration: a review of clinical trials.
Cell Death Dis. 2020 Sep 23;11(9):793. doi: 10.1038/s41419-020-02955-3.
10
Factors Impacting Efficacy of AAV-Mediated CRISPR-Based Genome Editing for Treatment of Choroidal Neovascularization.
Mol Ther Methods Clin Dev. 2020 Jan 23;17:409-417. doi: 10.1016/j.omtm.2020.01.006. eCollection 2020 Jun 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验