Suppr超能文献

使用压缩的低延迟神经网络通过GPU加速推理对OCT容积进行实时视网膜层分割。

Real-time retinal layer segmentation of OCT volumes with GPU accelerated inferencing using a compressed, low-latency neural network.

作者信息

Borkovkina Svetlana, Camino Acner, Janpongsri Worawee, Sarunic Marinko V, Jian Yifan

机构信息

Department of Engineering Science, Simon Fraser University, Burnaby, Canada.

Casey Eye Institute, Oregon Health & Science University, Portland, OR 27239, USA.

出版信息

Biomed Opt Express. 2020 Jun 24;11(7):3968-3984. doi: 10.1364/BOE.395279. eCollection 2020 Jul 1.

Abstract

Segmentation of retinal layers in optical coherence tomography (OCT) is an essential step in OCT image analysis for screening, diagnosis, and assessment of retinal disease progression. Real-time segmentation together with high-speed OCT volume acquisition allows rendering of OCT of arbitrary retinal layers, which can be used to increase the yield rate of high-quality scans, provide real-time feedback during image-guided surgeries, and compensate aberrations in adaptive optics (AO) OCT without using wavefront sensors. We demonstrate here unprecedented real-time OCT segmentation of eight retinal layer boundaries achieved by 3 levels of optimization: 1) a modified, low complexity, neural network structure, 2) an innovative scheme of neural network compression with TensorRT, and 3) specialized GPU hardware to accelerate computation. Inferencing with the compressed network U-NetRT took 3.5 ms, improving by 21 times the speed of conventional U-Net inference without reducing the accuracy. The latency of the entire pipeline from data acquisition to inferencing was only 41 ms, enabled by parallelized batch processing. The system and method allow real-time updating of OCT and OCTA visualizations of arbitrary retinal layers and plexuses in continuous mode scanning. To the best our knowledge, our work is the first demonstration of an ophthalmic imager with embedded artificial intelligence (AI) providing real-time feedback.

摘要

光学相干断层扫描(OCT)中视网膜层的分割是OCT图像分析中的一个重要步骤,用于视网膜疾病的筛查、诊断和病情进展评估。实时分割与高速OCT容积采集相结合,能够生成任意视网膜层的OCT图像,可用于提高高质量扫描的产出率、在图像引导手术期间提供实时反馈,以及在不使用波前传感器的情况下补偿自适应光学(AO)OCT中的像差。我们在此展示了通过三个层次的优化实现的前所未有的八个视网膜层边界的实时OCT分割:1)一种经过改进的、低复杂度的神经网络结构;2)一种采用TensorRT的创新神经网络压缩方案;3)用于加速计算的专用GPU硬件。使用压缩网络U-NetRT进行推理耗时3.5毫秒,在不降低准确率的情况下,将传统U-Net推理速度提高了21倍。通过并行批处理,从数据采集到推理的整个流程延迟仅为41毫秒。该系统和方法允许在连续模式扫描中实时更新任意视网膜层和神经纤维层的OCT和OCTA可视化图像。据我们所知,我们的工作首次展示了一种具有嵌入式人工智能(AI)并能提供实时反馈的眼科成像仪。

相似文献

1
Real-time retinal layer segmentation of OCT volumes with GPU accelerated inferencing using a compressed, low-latency neural network.
Biomed Opt Express. 2020 Jun 24;11(7):3968-3984. doi: 10.1364/BOE.395279. eCollection 2020 Jul 1.
2
Pseudo-real-time retinal layer segmentation for high-resolution adaptive optics optical coherence tomography.
J Biophotonics. 2020 Aug;13(8):e202000042. doi: 10.1002/jbio.202000042. Epub 2020 Jun 17.
3
PseudoSegRT: efficient pseudo-labelling for intraoperative OCT segmentation.
Int J Comput Assist Radiol Surg. 2023 Jul;18(7):1245-1252. doi: 10.1007/s11548-023-02928-9. Epub 2023 May 26.
4
Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited].
Biomed Opt Express. 2017 Apr 19;8(5):2536-2562. doi: 10.1364/BOE.8.002536. eCollection 2017 May 1.
5
6
Automated segmentation of retinal layer boundaries and capillary plexuses in wide-field optical coherence tomographic angiography.
Biomed Opt Express. 2018 Aug 24;9(9):4429-4442. doi: 10.1364/BOE.9.004429. eCollection 2018 Sep 1.
7
Multiple surface segmentation using convolution neural nets: application to retinal layer segmentation in OCT images.
Biomed Opt Express. 2018 Aug 29;9(9):4509-4526. doi: 10.1364/BOE.9.004509. eCollection 2018 Sep 1.
8
Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice.
Biomed Opt Express. 2014 Jan 21;5(2):547-59. doi: 10.1364/BOE.5.000547. eCollection 2014 Feb 1.
9
Wavefront sensorless adaptive optics OCT with the DONE algorithm for human retinal imaging [Invited].
Biomed Opt Express. 2017 Mar 21;8(4):2261-2275. doi: 10.1364/BOE.8.002261. eCollection 2017 Apr 1.
10
Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
Ophthalmology. 2005 Oct;112(10):1734-46. doi: 10.1016/j.ophtha.2005.05.023.

引用本文的文献

4
Developing a 10-Layer Retinal Segmentation for MacTel Using Semi-Supervised Learning.
Transl Vis Sci Technol. 2024 Nov 4;13(11):2. doi: 10.1167/tvst.13.11.2.
5
Real-time line-field optical coherence tomography for cellular resolution imaging of biological tissue.
Biomed Opt Express. 2024 Jan 25;15(2):1059-1073. doi: 10.1364/BOE.511187. eCollection 2024 Feb 1.
6
Robotic Navigation Autonomy for Subretinal Injection via Intelligent Real-Time Virtual iOCT Volume Slicing.
IEEE Int Conf Robot Autom. 2023 May-Jun;2023:4724-4731. doi: 10.1109/icra48891.2023.10160372. Epub 2023 Jul 4.
7
Annotation-efficient learning for OCT segmentation.
Biomed Opt Express. 2023 Jun 13;14(7):3294-3307. doi: 10.1364/BOE.486276. eCollection 2023 Jul 1.
8
Methods for real-time feature-guided image fusion of intrasurgical volumetric optical coherence tomography with digital microscopy.
Biomed Opt Express. 2023 Jun 13;14(7):3308-3326. doi: 10.1364/BOE.488975. eCollection 2023 Jul 1.
9
Real-time closed-loop tissue-specific laser osteotomy using deep-learning-assisted optical coherence tomography.
Biomed Opt Express. 2023 May 31;14(6):2986-3002. doi: 10.1364/BOE.486660. eCollection 2023 Jun 1.
10
PseudoSegRT: efficient pseudo-labelling for intraoperative OCT segmentation.
Int J Comput Assist Radiol Surg. 2023 Jul;18(7):1245-1252. doi: 10.1007/s11548-023-02928-9. Epub 2023 May 26.

本文引用的文献

1
Pseudo-real-time retinal layer segmentation for high-resolution adaptive optics optical coherence tomography.
J Biophotonics. 2020 Aug;13(8):e202000042. doi: 10.1002/jbio.202000042. Epub 2020 Jun 17.
3
Automated diagnosis and segmentation of choroidal neovascularization in OCT angiography using deep learning.
Biomed Opt Express. 2020 Jan 14;11(2):927-944. doi: 10.1364/BOE.379977. eCollection 2020 Feb 1.
4
Three-dimensional structural and angiographic evaluation of foveal ischemia in diabetic retinopathy: method and validation.
Biomed Opt Express. 2019 Jun 24;10(7):3522-3532. doi: 10.1364/BOE.10.003522. eCollection 2019 Jul 1.
5
Monitoring Disease Progression With a Quantitative Severity Scale for Retinopathy of Prematurity Using Deep Learning.
JAMA Ophthalmol. 2019 Sep 1;137(9):1022-1028. doi: 10.1001/jamaophthalmol.2019.2433.
6
Improving visible light OCT of the human retina with rapid spectral shaping and axial tracking.
Biomed Opt Express. 2019 May 21;10(6):2918-2931. doi: 10.1364/BOE.10.002918. eCollection 2019 Jun 1.
7
Progression of subclinical choroidal neovascularization in age-related macular degeneration.
PLoS One. 2019 Jun 4;14(6):e0217805. doi: 10.1371/journal.pone.0217805. eCollection 2019.
8
Automated detection of shadow artifacts in optical coherence tomography angiography.
Biomed Opt Express. 2019 Feb 28;10(3):1514-1531. doi: 10.1364/BOE.10.001514. eCollection 2019 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验