Suppr超能文献

使用3D深度卷积回归网络对年龄相关性黄斑变性患者进行光学相干断层扫描(OCT)中的视网膜层分割

Retinal layer segmentation in optical coherence tomography (OCT) using a 3D deep-convolutional regression network for patients with age-related macular degeneration.

作者信息

Mukherjee Souvick, De Silva Tharindu, Grisso Peyton, Wiley Henry, Tiarnan D L Keenan, Thavikulwat Alisa T, Chew Emily, Cukras Catherine

机构信息

Unit on Clinical Investigation of Retinal Disease, 10 Center Drive, Building 10-CRC Room 3-2531, MD 20892-1204, USA.

Division of Epidemiology and Clinical Applications in National Eye Institute, National Institutes of Health, Bethesda, MD 20892-4874, USA.

出版信息

Biomed Opt Express. 2022 May 5;13(6):3195-3210. doi: 10.1364/BOE.450193. eCollection 2022 Jun 1.

Abstract

Retinal layer segmentation in optical coherence tomography (OCT) images is an important approach for detecting and prognosing disease. Automating segmentation using robust machine learning techniques lead to computationally efficient solutions and significantly reduces the cost of labor-intensive labeling, which is traditionally performed by trained graders at a reading center, sometimes aided by semi-automated algorithms. Although several algorithms have been proposed since the revival of deep learning, eyes with severe pathological conditions continue to challenge fully automated segmentation approaches. There remains an opportunity to leverage the underlying spatial correlations between the retinal surfaces in the segmentation approach. Some of these proposed traditional methods can be expanded to utilize the three-dimensional spatial context governing the retinal image volumes by replacing the use of 2D filters with 3D filters. Towards this purpose, we propose a spatial-context, continuity and anatomical relationship preserving semantic segmentation algorithm, which utilizes the 3D spatial context from the image volumes with the use of 3D filters. We propose a 3D deep neural network capable of learning the surface positions of the layers in the retinal volumes. We utilize a dataset of OCT images from patients with Age-related Macular Degeneration (AMD) to assess performance of our model and provide both qualitative (including segmentation maps and thickness maps) and quantitative (including error metric comparisons and volumetric comparisons) results, which demonstrate that our proposed method performs favorably even for eyes with pathological changes caused by severe retinal diseases. The Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for patients with a wide range of AMD severity scores (0-11) were within 0.84±0.41 and 1.33±0.73 pixels, respectively, which are significantly better than some of the other state-of-the-art algorithms. The results demonstrate the utility of extracting features from the entire OCT volume by treating the volume as a correlated entity and show the benefit of utilizing 3D autoencoder based regression networks for smoothing the approximated retinal layers by inducing shape based regularization constraints.

摘要

光学相干断层扫描(OCT)图像中的视网膜层分割是检测和预测疾病的重要方法。使用强大的机器学习技术实现分割自动化可带来计算效率高的解决方案,并显著降低劳动密集型标注的成本,传统上这种标注由阅读中心的训练有素的分级人员进行,有时还借助半自动算法。尽管自深度学习复兴以来已提出了多种算法,但患有严重病理状况的眼睛仍对全自动分割方法构成挑战。在分割方法中利用视网膜表面之间潜在的空间相关性仍存在机会。其中一些已提出的传统方法可以通过用3D滤波器替代2D滤波器的使用来扩展,以利用控制视网膜图像体积的三维空间上下文。为此,我们提出一种保留空间上下文、连续性和解剖关系的语义分割算法,该算法利用3D滤波器从图像体积中获取3D空间上下文。我们提出一种能够学习视网膜体积中层的表面位置的3D深度神经网络。我们利用来自年龄相关性黄斑变性(AMD)患者的OCT图像数据集来评估我们模型的性能,并提供定性(包括分割图和厚度图)和定量(包括误差度量比较和体积比较)结果,这些结果表明我们提出的方法即使对于患有由严重视网膜疾病引起的病理变化的眼睛也表现良好。对于具有广泛AMD严重程度评分(0 - 11)的患者,平均绝对误差(MAE)和均方根误差(RMSE)分别在0.84±0.41和1.33±0.73像素以内,这明显优于其他一些最先进的算法。结果证明了将体积视为相关实体从整个OCT体积中提取特征的实用性,并展示了利用基于3D自动编码器的回归网络通过引入基于形状的正则化约束来平滑近似视网膜层的好处。

相似文献

3
Automatic segmentation of OCT retinal boundaries using recurrent neural networks and graph search.
Biomed Opt Express. 2018 Oct 26;9(11):5759-5777. doi: 10.1364/BOE.9.005759. eCollection 2018 Nov 1.
5
Deep ensemble learning for automated non-advanced AMD classification using optimized retinal layer segmentation and SD-OCT scans.
Comput Biol Med. 2023 Mar;154:106512. doi: 10.1016/j.compbiomed.2022.106512. Epub 2023 Jan 10.
6
A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field.
Comput Methods Programs Biomed. 2018 Oct;165:235-250. doi: 10.1016/j.cmpb.2018.09.004. Epub 2018 Sep 5.
7
Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images.
Comput Methods Programs Biomed. 2019 Jul;176:69-80. doi: 10.1016/j.cmpb.2019.04.027. Epub 2019 Apr 24.
8
Volumetric quantification of choroid and Haller's sublayer using OCT scans: An accurate and unified approach based on stratified smoothing.
Comput Med Imaging Graph. 2022 Jul;99:102086. doi: 10.1016/j.compmedimag.2022.102086. Epub 2022 Jun 2.
9
Multiple surface segmentation using convolution neural nets: application to retinal layer segmentation in OCT images.
Biomed Opt Express. 2018 Aug 29;9(9):4509-4526. doi: 10.1364/BOE.9.004509. eCollection 2018 Sep 1.
10
Deep learning architectures analysis for age-related macular degeneration segmentation on optical coherence tomography scans.
Comput Methods Programs Biomed. 2020 Oct;195:105566. doi: 10.1016/j.cmpb.2020.105566. Epub 2020 May 26.

引用本文的文献

1
OCT-SelfNet: a self-supervised framework with multi-source datasets for generalized retinal disease detection.
Front Big Data. 2025 Jul 29;8:1609124. doi: 10.3389/fdata.2025.1609124. eCollection 2025.
4
Retinal OCT Layer Segmentation via Joint Motion Correction and Graph-Assisted 3D Neural Network.
IEEE Access. 2023;11:103319-103332. doi: 10.1109/access.2023.3317011. Epub 2023 Sep 18.
6
Exploring Publicly Accessible Optical Coherence Tomography Datasets: A Comprehensive Overview.
Diagnostics (Basel). 2024 Aug 1;14(15):1668. doi: 10.3390/diagnostics14151668.
7
Hybrid deep learning and optimal graph search method for optical coherence tomography layer segmentation in diseases affecting the optic nerve.
Biomed Opt Express. 2024 May 9;15(6):3681-3698. doi: 10.1364/BOE.516045. eCollection 2024 Jun 1.
8
Automatic exudate and aneurysm segmentation in OCT images using UNET++ and hyperreflective-foci feature based bagged tree ensemble.
PLoS One. 2024 May 24;19(5):e0304146. doi: 10.1371/journal.pone.0304146. eCollection 2024.
10
Evaluation of Structural Retinal Layer Alterations in Retinitis Pigmentosa.
Rom J Ophthalmol. 2023 Oct-Dec;67(4):326-336. doi: 10.22336/rjo.2023.53.

本文引用的文献

1
Structured layer surface segmentation for retina OCT using fully convolutional regression networks.
Med Image Anal. 2021 Feb;68:101856. doi: 10.1016/j.media.2020.101856. Epub 2020 Oct 14.
3
Deep learning based retinal OCT segmentation.
Comput Biol Med. 2019 Nov;114:103445. doi: 10.1016/j.compbiomed.2019.103445. Epub 2019 Sep 17.
5
Multiple surface segmentation using convolution neural nets: application to retinal layer segmentation in OCT images.
Biomed Opt Express. 2018 Aug 29;9(9):4509-4526. doi: 10.1364/BOE.9.004509. eCollection 2018 Sep 1.
6
ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks.
Biomed Opt Express. 2017 Jul 13;8(8):3627-3642. doi: 10.1364/BOE.8.003627. eCollection 2017 Aug 1.
7
Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search.
Biomed Opt Express. 2017 Apr 27;8(5):2732-2744. doi: 10.1364/BOE.8.002732. eCollection 2017 May 1.
8
Joint retinal layer and fluid segmentation in OCT scans of eyes with severe macular edema using unsupervised representation and auto-context.
Biomed Opt Express. 2017 Feb 27;8(3):1874-1888. doi: 10.1364/BOE.8.001874. eCollection 2017 Mar 1.
9
Quantitative analysis of retinal OCT.
Med Image Anal. 2016 Oct;33:165-169. doi: 10.1016/j.media.2016.06.001. Epub 2016 Jul 12.
10
Impairments in Dark Adaptation Are Associated with Age-Related Macular Degeneration Severity and Reticular Pseudodrusen.
Ophthalmology. 2015 Oct;122(10):2053-62. doi: 10.1016/j.ophtha.2015.06.023. Epub 2015 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验