Kim Ji Woong, Wei Shuwen, Zhang Peiyao, Gehlbach Peter, Kang Jin U, Iordachita Iulian, Kobilarov Marin
Mechanical Engineering Dept at the Johns Hopkins University, Baltimore, MD 21218 USA.
Electrical and Computer Engineering Dept at the Johns Hopkins University, Baltimore, MD 21218 USA.
IEEE Robot Autom Lett. 2024 Apr;9(4):3807-3814. doi: 10.1109/lra.2024.3368192. Epub 2024 Feb 21.
Retinal surgery is a challenging procedure requiring precise manipulation of the fragile retinal tissue, often at the scale of tens-of-micrometers. Its difficulty has motivated the development of robotic assistance platforms to enable precise motion, and more recently, novel sensors such as microscope integrated optical coherence tomography (OCT) for RGB-D view of the surgical workspace. The combination of these devices opens new possibilities for robotic automation of tasks such as subretinal injection (SI), a procedure that involves precise needle insertion into the retina for targeted drug delivery. Motivated by this opportunity, we develop a framework for autonomous needle navigation during SI. We develop a system which enables the surgeon to specify waypoint goals in the microscope and OCT views, and the system autonomously navigates the needle to the desired subretinal space in . Our system integrates OCT and microscope images with convolutional neural networks (CNNs) to automatically segment the surgical tool and retinal tissue boundaries, and model predictive control that generates optimal trajectories that respect kinematic constraints to ensure patient safety. We validate our system by demonstrating 30 successful SI trials on pig eyes. Preliminary comparisons to a human operator in robot-assisted mode highlight the enhanced safety and performance of our system.
视网膜手术是一项具有挑战性的操作,需要对脆弱的视网膜组织进行精确操作,操作尺度通常在几十微米。其难度促使了机器人辅助平台的发展,以实现精确运动,最近还出现了诸如集成在显微镜上的光学相干断层扫描(OCT)等新型传感器,用于获取手术工作空间的RGB-D视图。这些设备的结合为视网膜下注射(SI)等任务的机器人自动化开辟了新的可能性,视网膜下注射是一种将针精确插入视网膜以进行靶向药物递送的操作。受此机遇的推动,我们开发了一种用于视网膜下注射期间自主针头导航的框架。我们开发了一个系统,使外科医生能够在显微镜和OCT视图中指定路径点目标,并且该系统能在……将针头自主导航到所需的视网膜下空间。我们的系统将OCT和显微镜图像与卷积神经网络(CNN)集成,以自动分割手术工具和视网膜组织边界,并采用模型预测控制生成符合运动学约束的最优轨迹,以确保患者安全。我们通过在猪眼上进行30次成功的视网膜下注射试验来验证我们的系统。与机器人辅助模式下的人类操作员进行的初步比较突出了我们系统更高的安全性和性能。