Islam Md Tauhidul, Zhou Zixia, Ren Hongyi, Khuzani Masoud Badiei, Kapp Daniel, Zou James, Tian Lu, Liao Joseph C, Xing Lei
Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA.
Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA.
Nat Commun. 2023 Dec 21;14(1):8506. doi: 10.1038/s41467-023-43958-w.
Deep neural networks (DNNs) extract thousands to millions of task-specific features during model training for inference and decision-making. While visualizing these features is critical for comprehending the learning process and improving the performance of the DNNs, existing visualization techniques work only for classification tasks. For regressions, the feature points lie on a high dimensional continuum having an inherently complex shape, making a meaningful visualization of the features intractable. Given that the majority of deep learning applications are regression-oriented, developing a conceptual framework and computational method to reliably visualize the regression features is of great significance. Here, we introduce a manifold discovery and analysis (MDA) method for DNN feature visualization, which involves learning the manifold topology associated with the output and target labels of a DNN. MDA leverages the acquired topological information to preserve the local geometry of the feature space manifold and provides insightful visualizations of the DNN features, highlighting the appropriateness, generalizability, and adversarial robustness of a DNN. The performance and advantages of the MDA approach compared to the existing methods are demonstrated in different deep learning applications.
深度神经网络(DNN)在模型训练过程中提取数千到数百万个特定任务的特征,用于推理和决策。虽然可视化这些特征对于理解学习过程和提高DNN的性能至关重要,但现有的可视化技术仅适用于分类任务。对于回归任务,特征点位于具有固有复杂形状的高维连续统上,使得对特征进行有意义的可视化变得棘手。鉴于大多数深度学习应用都是面向回归的,开发一个概念框架和计算方法来可靠地可视化回归特征具有重要意义。在这里,我们介绍一种用于DNN特征可视化的流形发现与分析(MDA)方法,该方法涉及学习与DNN的输出和目标标签相关的流形拓扑。MDA利用获取的拓扑信息来保留特征空间流形的局部几何结构,并提供对DNN特征的有洞察力的可视化,突出DNN的适用性、泛化性和对抗鲁棒性。在不同的深度学习应用中展示了MDA方法与现有方法相比的性能和优势。