Suppr超能文献

利用混合特征融合模型通过SNARE蛋白早期检测植物中的非生物胁迫。

Early detection of abiotic stress in plants through SNARE proteins using hybrid feature fusion model.

作者信息

T Bhargavi, D Sumathi

机构信息

School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India.

出版信息

PeerJ Comput Sci. 2024 Aug 5;10:e2149. doi: 10.7717/peerj-cs.2149. eCollection 2024.

Abstract

Agriculture is the main source of livelihood for most of the population across the globe. Plants are often considered life savers for humanity, having evolved complex adaptations to cope with adverse environmental conditions. Protecting agricultural produce from devastating conditions such as stress is essential for the sustainable development of the nation. Plants respond to various environmental stressors such as drought, salinity, heat, cold, . Abiotic stress can significantly impact crop yield and development posing a major threat to agriculture. SNARE proteins play a major role in pathological processes as they are vital proteins in the life sciences. These proteins act as key players in stress responses. Feature extraction is essential for visualizing the underlying structure of the SNARE proteins in analyzing the root cause of abiotic stress in plants. To address this issue, we developed a hybrid model to capture the hidden structures of the SNAREs. A feature fusion technique has been devised by combining the potential strengths of convolutional neural networks (CNN) with a high dimensional radial basis function (RBF) network. Additionally, we employ a bi-directional long short-term memory (Bi-LSTM) network to classify the presence of SNARE proteins. Our feature fusion model successfully identified abiotic stress in plants with an accuracy of 74.6%. When compared with various existing frameworks, our model demonstrates superior classification results.

摘要

农业是全球大多数人口的主要生计来源。植物常被视为人类的生命拯救者,它们进化出了复杂的适应性以应对不利的环境条件。保护农产品免受诸如胁迫等毁灭性条件的影响对国家的可持续发展至关重要。植物会对各种环境胁迫因子做出反应,如干旱、盐碱化、高温、低温等。非生物胁迫会显著影响作物产量和发育,对农业构成重大威胁。SNARE蛋白在病理过程中起主要作用,因为它们是生命科学中的重要蛋白质。这些蛋白质在胁迫反应中起着关键作用。在分析植物非生物胁迫的根本原因时,特征提取对于可视化SNARE蛋白的潜在结构至关重要。为了解决这个问题,我们开发了一种混合模型来捕捉SNARE蛋白的隐藏结构。通过将卷积神经网络(CNN)的潜在优势与高维径向基函数(RBF)网络相结合,设计了一种特征融合技术。此外,我们采用双向长短期记忆(Bi-LSTM)网络对SNARE蛋白的存在进行分类。我们的特征融合模型成功地识别出植物中的非生物胁迫,准确率为74.6%。与各种现有框架相比,我们的模型展示了卓越的分类结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/756b/11323173/2bdb0ca98c35/peerj-cs-10-2149-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验