Innovative Technology Of Radiotherapy Computations and Hardware (iTORCH) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
Phys Med Biol. 2021 Dec 7;66(24). doi: 10.1088/1361-6560/ac3d16.
. Robustness is an important aspect to consider, when developing methods for medical image analysis. This study investigated robustness properties of deep neural networks (DNNs) for a lung nodule classification problem based on CT images and proposed a solution to improve robustness.. We firstly constructed a class of four DNNs with different widths, each predicting an output label (benign or malignant) for an input CT image cube containing a lung nodule. These networks were trained to achieve Area Under the Curve of 0.891-0.914 on a testing dataset. We then added to the input CT image cubes noise signals generated randomly using a realistic CT image noise model based on a noise power spectrum at 100 mAs, and monitored the DNNs output change. We defined(%) to quantify the robustness of the trained DNN model, indicating that for 5% of CT image cubes, the noise can change the prediction results with a chance of at least(%). To understand robustness, we viewed the information processing pipeline by the DNN as a two-step process, with the first step using all but the last layers to extract representations of the input CT image cubes in a latent space, and the second step employing the last fully-connected layer as a linear classifier to determine the position of the sample representations relative to a decision plane. To improve robustness, we proposed to retrain the last layer of the DNN with a Supporting Vector Machine (SVM) hinge loss function to enforce the desired position of the decision plane..ranged in 47.0%-62.0% in different DNNs. The unrobustness behavior may be ascribed to the unfavorable placement of the decision plane in the latent representation space, which made some samples be perturbed to across the decision plane and hence susceptible to noise. The DNN-SVM model improved robustness over the DNN model and reducedby 8.8%-21.0%.. This study provided insights about the potential reason for the unrobustness behavior of DNNs and the proposed DNN-SVM model improved model robustness.
. 在开发医学图像分析方法时,稳健性是一个重要的考虑因素。本研究基于 CT 图像调查了用于肺结节分类问题的深度神经网络 (DNN) 的稳健性特性,并提出了一种提高稳健性的解决方案。我们首先构建了一类具有不同宽度的四个 DNN,每个 DNN 都为包含肺结节的输入 CT 图像立方体预测一个输出标签(良性或恶性)。这些网络在测试数据集上的曲线下面积达到了 0.891-0.914。然后,我们在输入 CT 图像立方体上添加了使用基于 100 mAs 噪声功率谱的真实 CT 图像噪声模型生成的随机噪声信号,并监测 DNN 的输出变化。我们定义了(%)来量化训练后的 DNN 模型的稳健性,表明对于 5%的 CT 图像立方体,噪声可以改变预测结果的可能性至少为(%)。为了理解稳健性,我们将 DNN 的信息处理管道视为两步过程,第一步使用除最后一层之外的所有层在潜在空间中提取输入 CT 图像立方体的表示,第二步使用最后一个全连接层作为线性分类器来确定样本表示相对于决策平面的位置。为了提高稳健性,我们提出使用支持向量机 (SVM) 铰链损失函数重新训练 DNN 的最后一层,以强制决策平面的位置。在不同的 DNN 中,稳健性在 47.0%-62.0%之间变化。不稳健的行为可能归因于决策平面在潜在表示空间中的不利位置,这使得一些样本受到干扰而跨越决策平面,因此容易受到噪声的影响。DNN-SVM 模型提高了稳健性,比 DNN 模型提高了 8.8%-21.0%。本研究提供了关于 DNN 不稳健行为的潜在原因的见解,提出的 DNN-SVM 模型提高了模型的稳健性。