Suppr超能文献

相似文献

1
Assessing and improving reliability of neighbor embedding methods: a map-continuity perspective.
Nat Commun. 2025 May 30;16(1):5037. doi: 10.1038/s41467-025-60434-9.
2
DGCyTOF: Deep learning with graphic cluster visualization to predict cell types of single cell mass cytometry data.
PLoS Comput Biol. 2022 Apr 11;18(4):e1008885. doi: 10.1371/journal.pcbi.1008885. eCollection 2022 Apr.
4
Deep Recursive Embedding for High-Dimensional Data.
IEEE Trans Vis Comput Graph. 2022 Feb;28(2):1237-1248. doi: 10.1109/TVCG.2021.3122388. Epub 2021 Dec 30.
5
Visualizing single-cell data with the neighbor embedding spectrum.
bioRxiv. 2024 Apr 29:2024.04.26.590867. doi: 10.1101/2024.04.26.590867.
6
Shape-aware stochastic neighbor embedding for robust data visualisations.
BMC Bioinformatics. 2022 Nov 14;23(1):477. doi: 10.1186/s12859-022-05028-8.
7
Dimensionality reduction by UMAP reinforces sample heterogeneity analysis in bulk transcriptomic data.
Cell Rep. 2021 Jul 27;36(4):109442. doi: 10.1016/j.celrep.2021.109442.
8
Embedding Functional Brain Networks in Low Dimensional Spaces Using Manifold Learning Techniques.
Front Neuroinform. 2021 Dec 24;15:740143. doi: 10.3389/fninf.2021.740143. eCollection 2021.
9
Assessing single-cell transcriptomic variability through density-preserving data visualization.
Nat Biotechnol. 2021 Jun;39(6):765-774. doi: 10.1038/s41587-020-00801-7. Epub 2021 Jan 18.
10
Capturing discrete latent structures: choose LDs over PCs.
Biostatistics. 2022 Dec 12;24(1):1-16. doi: 10.1093/biostatistics/kxab030.

本文引用的文献

1
Diffusive topology preserving manifold distances for single-cell data analysis.
Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2404860121. doi: 10.1073/pnas.2404860121. Epub 2025 Jan 24.
2
Seeing data as t-SNE and UMAP do.
Nat Methods. 2024 Jun;21(6):930-933. doi: 10.1038/s41592-024-02301-x.
4
Genomic data in the All of Us Research Program.
Nature. 2024 Mar;627(8003):340-346. doi: 10.1038/s41586-023-06957-x. Epub 2024 Feb 19.
5
Dynamic visualization of high-dimensional data.
Nat Comput Sci. 2023 Jan;3(1):86-100. doi: 10.1038/s43588-022-00380-4. Epub 2022 Dec 30.
6
Revealing hidden patterns in deep neural network feature space continuum via manifold learning.
Nat Commun. 2023 Dec 21;14(1):8506. doi: 10.1038/s41467-023-43958-w.
7
The specious art of single-cell genomics.
PLoS Comput Biol. 2023 Aug 17;19(8):e1011288. doi: 10.1371/journal.pcbi.1011288. eCollection 2023 Aug.
8
layerUMAP: A tool for visualizing and understanding deep learning models in biological sequence classification using UMAP.
iScience. 2022 Nov 7;25(12):105530. doi: 10.1016/j.isci.2022.105530. eCollection 2022 Dec 22.
9
Using Global t-SNE to Preserve Intercluster Data Structure.
Neural Comput. 2022 Jul 14;34(8):1637-1651. doi: 10.1162/neco_a_01504.
10
EMBEDR: Distinguishing signal from noise in single-cell omics data.
Patterns (N Y). 2022 Feb 8;3(3):100443. doi: 10.1016/j.patter.2022.100443. eCollection 2022 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验