Suppr超能文献

用于具有热优化的大规模经济调度系统的开普勒算法。

Kepler Algorithm for Large-Scale Systems of Economic Dispatch with Heat Optimization.

作者信息

Hakmi Sultan Hassan, Shaheen Abdullah M, Alnami Hashim, Moustafa Ghareeb, Ginidi Ahmed

机构信息

Electrical Engineering Department, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia.

Department of Electrical Engineering, Faculty of Engineering, Suez University, Suez P.O. Box 43221, Egypt.

出版信息

Biomimetics (Basel). 2023 Dec 14;8(8):608. doi: 10.3390/biomimetics8080608.

Abstract

Combined Heat and Power Units Economic Dispatch (CHPUED) is a challenging non-convex optimization challenge in the power system that aims at decreasing the production cost by scheduling the heat and power generation outputs to dedicated units. In this article, a Kepler optimization algorithm (KOA) is designed and employed to handle the CHPUED issue under valve points impacts in large-scale systems. The proposed KOA is used to forecast the position and motion of planets at any given time based on Kepler's principles of planetary motion. The large 48-unit, 96-unit, and 192-unit systems are considered in this study to manifest the superiority of the developed KOA, which reduces the fuel costs to 116,650.0870 USD/h, 234,285.2584 USD/h, and 487,145.2000 USD/h, respectively. Moreover, the dwarf mongoose optimization algorithm (DMOA), the energy valley optimizer (EVO), gray wolf optimization (GWO), and particle swarm optimization (PSO) are studied in this article in a comparative manner with the KOA when considering the 192-unit test system. For this large-scale system, the presented KOA successfully achieves improvements of 19.43%, 17.49%, 39.19%, and 62.83% compared to the DMOA, the EVO, GWO, and PSO, respectively. Furthermore, a feasibility study is conducted for the 192-unit test system, which demonstrates the superiority and robustness of the proposed KOA in obtaining all operating points between the boundaries without any violations.

摘要

热电联产机组经济调度(CHPUED)是电力系统中一项具有挑战性的非凸优化难题,其目的是通过将热力和电力输出调度到专用机组来降低生产成本。在本文中,设计并采用了一种开普勒优化算法(KOA)来处理大规模系统中阀点影响下的CHPUED问题。所提出的KOA基于开普勒行星运动原理用于预测任意给定时间行星的位置和运动。本研究考虑了48机组、96机组和192机组的大型系统,以体现所开发的KOA的优越性,该算法分别将燃料成本降低到116,650.0870美元/小时、234,285.2584美元/小时和487,145.2000美元/小时。此外,本文还以比较的方式研究了矮猫鼬优化算法(DMOA)、能量谷优化器(EVO)、灰狼优化算法(GWO)和粒子群优化算法(PSO)与KOA在192机组测试系统中的性能。对于这个大规模系统,所提出的KOA分别比DMOA、EVO、GWO和PSO成功实现了19.43%、17.49%、39.19%和62.83%的改进。此外,还对192机组测试系统进行了可行性研究,结果表明所提出的KOA在获取边界之间的所有运行点且无任何违规方面具有优越性和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27a0/10741829/67a110e70704/biomimetics-08-00608-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验