Hassan Hakmi Sultan, Alnami Hashim, Ginidi Ahmed, Shaheen Abdullah, Alghamdi Thamer A H
Department of Electrical and Electronic Engineering, College of Engineering and Computer Science, Jazan University, P.O. Box114, Jazan, 45142, Saudi Arabia.
Department of Electrical Engineering, Faculty of Engineering, Suez University, P.O. Box: 43221, Suez, Egypt.
Heliyon. 2024 Aug 5;10(16):e35771. doi: 10.1016/j.heliyon.2024.e35771. eCollection 2024 Aug 30.
The primary objective of this study is to investigate the effects of the Fractional Order Kepler Optimization Algorithm (FO-KOA) on photovoltaic (PV) module feature identification in solar systems. Leveraging the strengths of the original KOA, FO-KOA introduces fractional order elements and a Local Escaping Approach (LEA) to enhance search efficiency and prevent premature convergence. The FO element provides effective information and past expertise sharing amongst the participants to avoid premature converging. Additionally, LEA is incorporated to boost the search procedure by evading local optimization. The single-diode-model (SDM) and Double-diode-model (DDM) are two different equivalent circuits that are used for obtaining the unidentified parameters of the PV. Applied to KC-200, Ultra-Power-85, and SP-70 PV modules, FO-KOA is compared to the original KOA technique and contemporary algorithms. Simulation results demonstrate FO-KOA's remarkable average improvement rates, showcasing its significant advantages and robustness over earlier reported methods. The proposed FO-KOA demonstrates exceptional performance, outperforming existing algorithms by 94.42 %-99.73 % in optimizing PV cell parameter extraction, particularly for the KC200GT module, showcasing consistent superiority and robustness. Also, the proposed FO-KOA is validated of on SDM and DDM for the well-known RTC France PV cell.
本研究的主要目的是研究分数阶开普勒优化算法(FO-KOA)对太阳能系统中光伏(PV)模块特征识别的影响。FO-KOA利用原始开普勒优化算法(KOA)的优势,引入分数阶元素和局部逃逸方法(LEA)来提高搜索效率并防止早熟收敛。分数阶元素在参与者之间提供有效的信息和过往经验共享,以避免早熟收敛。此外,引入LEA以通过规避局部优化来促进搜索过程。单二极管模型(SDM)和双二极管模型(DDM)是用于获取光伏未识别参数的两种不同等效电路。将FO-KOA应用于KC-200、Ultra-Power-85和SP-70光伏模块,并与原始KOA技术和当代算法进行比较。仿真结果表明FO-KOA具有显著的平均改进率,显示出其相对于早期报道方法的显著优势和鲁棒性。所提出的FO-KOA表现出卓越的性能,在优化光伏电池参数提取方面比现有算法高出94.42%-99.73%,特别是对于KC200GT模块,展现出持续的优越性和鲁棒性。此外,所提出的FO-KOA在著名的法国RTC光伏电池的SDM和DDM上得到了验证。