Suppr超能文献

丙氨酸,一种新型的产乙酸菌伍德氏醋酸杆菌的生长基质。

Alanine, a Novel Growth Substrate for the Acetogenic Bacterium Acetobacterium woodii.

机构信息

Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany.

Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany

出版信息

Appl Environ Microbiol. 2018 Nov 15;84(23). doi: 10.1128/AEM.02023-18. Print 2018 Dec 1.

Abstract

Acetogenic bacteria are an ecophysiologically important group of strictly anaerobic bacteria that grow lithotrophically on H plus CO or on CO or heterotrophically on different substrates such as sugars, alcohols, aldehydes, or acids. Amino acids are rarely used. Here, we describe that the model acetogen can use alanine as the sole carbon and energy source, which is in contrast to the description of the type strain. The alanine degradation genes have been identified and characterized. A key to alanine degradation is an alanine dehydrogenase which has been characterized biochemically. The resulting pyruvate is further degraded to acetate by the known pathways involving the Wood-Ljungdahl pathway. Our studies culminate in a metabolic and bioenergetic scheme for alanine-dependent acetogenesis in Peptides and amino acids are widespread in nature, but there are only a few reports that demonstrated use of amino acids as carbon and energy sources by acetogenic bacteria, a central and important group in the anaerobic food web. Our finding that can perform alanine oxidation coupled to reduction of carbon dioxide not only increases the number of substrates that can be used by this model acetogen but also raises the possibility that other acetogens may also be able to use alanine. Indeed, the alanine genes are also present in at least two more acetogens, for which growth on alanine has not been reported so far. Alanine may be a promising substrate for industrial fermentations, since acid formation goes along with the production of a base (NH) and pH regulation is a minor issue.

摘要

产乙酸菌是一类严格厌氧的生理生态上非常重要的细菌,它们可以通过 H+和 CO2 的自养生长,或者通过 CO2 或不同的基质(如糖、醇、醛或酸)的异养生长来进行生长。它们很少利用氨基酸。在这里,我们描述了模式产乙酸菌 可以将丙氨酸作为唯一的碳源和能源,这与典型菌株的描述形成了对比。已经鉴定和描述了丙氨酸降解基因。丙氨酸降解的关键是一种丙氨酸脱氢酶,该酶已经进行了生化特性研究。由此产生的丙酮酸通过已知的途径进一步降解为乙酸,包括 Wood-Ljungdahl 途径。我们的研究最终提出了一个依赖于丙氨酸的产乙酸代谢和生物能量方案。

在自然界中,肽和氨基酸广泛存在,但只有少数报道表明产乙酸菌可以利用氨基酸作为碳源和能源,而产乙酸菌是厌氧食物网中的一个核心和重要群体。我们发现 可以进行与二氧化碳还原偶联的丙氨酸氧化,这不仅增加了该模式产乙酸菌可以利用的基质数量,而且还增加了其他产乙酸菌也可能能够利用丙氨酸的可能性。事实上,至少还有另外两种产乙酸菌也存在丙氨酸基因,但迄今为止尚未报道它们可以利用丙氨酸进行生长。由于酸的形成伴随着碱(NH)的产生,因此丙氨酸可能是工业发酵有前途的基质,并且 pH 值的调节也不是一个主要问题。

相似文献

1
Alanine, a Novel Growth Substrate for the Acetogenic Bacterium Acetobacterium woodii.
Appl Environ Microbiol. 2018 Nov 15;84(23). doi: 10.1128/AEM.02023-18. Print 2018 Dec 1.
2
Energetics and Application of Heterotrophy in Acetogenic Bacteria.
Appl Environ Microbiol. 2016 Jun 30;82(14):4056-4069. doi: 10.1128/AEM.00882-16. Print 2016 Jul 15.
3
Growth of the acetogenic bacterium Acetobacterium woodii by dismutation of acetaldehyde to acetate and ethanol.
Environ Microbiol Rep. 2020 Feb;12(1):58-62. doi: 10.1111/1758-2229.12811. Epub 2019 Nov 27.
4
2,3-Butanediol Metabolism in the Acetogen Acetobacterium woodii.
Appl Environ Microbiol. 2015 Jul;81(14):4711-9. doi: 10.1128/AEM.00960-15. Epub 2015 May 1.
5
Nonacetogenic growth of the acetogen Acetobacterium woodii on 1,2-propanediol.
J Bacteriol. 2015 Jan;197(2):382-91. doi: 10.1128/JB.02383-14. Epub 2014 Nov 10.
6
Glycine betaine metabolism in the acetogenic bacterium Acetobacterium woodii.
Environ Microbiol. 2018 Dec;20(12):4512-4525. doi: 10.1111/1462-2920.14389. Epub 2018 Oct 5.
7
Growth of the acetogenic bacterium Acetobacterium woodii on glycerol and dihydroxyacetone.
Environ Microbiol. 2021 May;23(5):2648-2658. doi: 10.1111/1462-2920.15503. Epub 2021 May 4.
8
Ethylene Glycol Metabolism in the Acetogen Acetobacterium woodii.
J Bacteriol. 2016 Jan 19;198(7):1058-65. doi: 10.1128/JB.00942-15.
9
Methanol metabolism in the acetogenic bacterium Acetobacterium woodii.
Environ Microbiol. 2018 Dec;20(12):4369-4384. doi: 10.1111/1462-2920.14356. Epub 2018 Oct 24.
10
CO Metabolism in the Acetogen Acetobacterium woodii.
Appl Environ Microbiol. 2015 Sep 1;81(17):5949-56. doi: 10.1128/AEM.01772-15. Epub 2015 Jun 19.

引用本文的文献

1
Translational efficiency in gas-fermenting bacteria: Adding a new layer of regulation to gene expression in acetogens.
iScience. 2023 Nov 2;26(12):108383. doi: 10.1016/j.isci.2023.108383. eCollection 2023 Dec 15.
2
Lactate formation from fructose or C1 compounds in the acetogen Acetobacterium woodii by metabolic engineering.
Appl Microbiol Biotechnol. 2023 Sep;107(17):5491-5502. doi: 10.1007/s00253-023-12637-7. Epub 2023 Jul 7.
4
Increasing lysine level improved methanol assimilation toward butyric acid production in Butyribacterium methylotrophicum.
Biotechnol Biofuels Bioprod. 2023 Jan 17;16(1):10. doi: 10.1186/s13068-023-02263-w.
5
Structure-based electron-confurcation mechanism of the Ldh-EtfAB complex.
Elife. 2022 Jun 24;11:e77095. doi: 10.7554/eLife.77095.
7
The pyruvate:ferredoxin oxidoreductase of the thermophilic acetogen, Thermoanaerobacter kivui.
FEBS Open Bio. 2021 May;11(5):1332-1342. doi: 10.1002/2211-5463.13136. Epub 2021 Apr 4.
8
Cysteine: an overlooked energy and carbon source.
Sci Rep. 2021 Jan 25;11(1):2139. doi: 10.1038/s41598-021-81103-z.
9
Defining Genomic and Predicted Metabolic Features of the Genus.
mSystems. 2020 Sep 15;5(5):e00277-20. doi: 10.1128/mSystems.00277-20.

本文引用的文献

1
Methanol metabolism in the acetogenic bacterium Acetobacterium woodii.
Environ Microbiol. 2018 Dec;20(12):4369-4384. doi: 10.1111/1462-2920.14356. Epub 2018 Oct 24.
2
Ethylene Glycol Metabolism in the Acetogen Acetobacterium woodii.
J Bacteriol. 2016 Jan 19;198(7):1058-65. doi: 10.1128/JB.00942-15.
3
Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii.
J Bacteriol. 2015 May;197(9):1681-9. doi: 10.1128/JB.00048-15. Epub 2015 Mar 2.
4
Nonacetogenic growth of the acetogen Acetobacterium woodii on 1,2-propanediol.
J Bacteriol. 2015 Jan;197(2):382-91. doi: 10.1128/JB.02383-14. Epub 2014 Nov 10.
5
Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria.
Nat Rev Microbiol. 2014 Dec;12(12):809-21. doi: 10.1038/nrmicro3365. Epub 2014 Nov 10.
6
A novel mode of lactate metabolism in strictly anaerobic bacteria.
Environ Microbiol. 2015 Mar;17(3):670-7. doi: 10.1111/1462-2920.12493. Epub 2014 May 21.
7
Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase.
Science. 2013 Dec 13;342(6164):1382-5. doi: 10.1126/science.1244758.
9
A bacterial electron-bifurcating hydrogenase.
J Biol Chem. 2012 Sep 7;287(37):31165-71. doi: 10.1074/jbc.M112.395038. Epub 2012 Jul 18.
10
Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation.
Biochim Biophys Acta. 2008 Dec;1784(12):1873-98. doi: 10.1016/j.bbapap.2008.08.012. Epub 2008 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验