Suppr超能文献

用于求解曲面上对流占优问题的具有二阶空间精度的修正特征有限元方法

Modified Characteristic Finite Element Method with Second-Order Spatial Accuracy for Solving Convection-Dominated Problem on Surfaces.

作者信息

Wu Longyuan, Feng Xinlong, He Yinnian

机构信息

College of Mathematics and Systems Science, Xinjiang University, Urumqi 830017, China.

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China.

出版信息

Entropy (Basel). 2023 Dec 7;25(12):1631. doi: 10.3390/e25121631.

Abstract

We present a modified characteristic finite element method that exhibits second-order spatial accuracy for solving convection-reaction-diffusion equations on surfaces. The temporal direction adopted the backward-Euler method, while the spatial direction employed the surface finite element method. In contrast to regular domains, it is observed that the point in the characteristic direction traverses the surface only once within a brief time. Thus, good approximation of the solution in the characteristic direction holds significant importance for the numerical scheme. In this regard, Taylor expansion is employed to reconstruct the solution beyond the surface in the characteristic direction. The stability of our scheme is then proved. A comparison is carried out with an existing characteristic finite element method based on face mesh. Numerical examples are provided to validate the effectiveness of our proposed method.

摘要

我们提出了一种改进的特征有限元方法,该方法在求解曲面上的对流-反应-扩散方程时具有二阶空间精度。时间方向采用向后欧拉方法,而空间方向采用曲面有限元方法。与常规区域不同的是,观察到在特征方向上的点在短时间内仅遍历曲面一次。因此,在特征方向上对解进行良好的逼近对数值格式至关重要。在这方面,采用泰勒展开在特征方向上重构曲面之外的解。然后证明了我们格式的稳定性。与基于面网格的现有特征有限元方法进行了比较。提供了数值例子来验证我们所提出方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adf7/10742401/dd0fe442e1e0/entropy-25-01631-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验