文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁铁矿/聚乳酸纳米复合材料的声化学合成

Sonochemical Synthesis of Magnetite/Poly(lactic acid) Nanocomposites.

作者信息

de França Juliene Oliveira Campos, Lima Quezia Dos Santos, Barbosa Mariana Martins de Melo, Fonseca Ana Lívia Fernandes, Machado Guilherme de França, Dias Sílvia Cláudia Loureiro, Dias José Alves

机构信息

Laboratory of Catalysis, Chemistry Institute (IQ-UnB), University of Brasília, Campus Universitário Darcy Ribeiro-Asa Norte, Brasília 70910-900, DF, Brazil.

出版信息

Polymers (Basel). 2023 Dec 11;15(24):4662. doi: 10.3390/polym15244662.


DOI:10.3390/polym15244662
PMID:38139914
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10747535/
Abstract

Nanocomposites based on poly(lactic acid) (PLA) and magnetite nanoparticles (MNP-FeO) show promise for applications in biomedical treatments. One key challenge is to improve the stabilization and dispersion of MNP-FeO. To address this, we synthesized MNP-FeO/PLA nanocomposites using ultrasound mediation and a single iron(II) precursor, eliminating the need for surfactants or organic solvents, and conducted the process under ambient conditions. The resulting materials, containing 18 and 33 wt.% FeO, exhibited unique thermal behavior characterized by two mass losses: one at a lower degradation temperature (T) and another at a higher T compared to pure PLA. This suggests that the interaction between PLA and MNP-FeO occurs through hydrogen bonds, enhancing the thermal stability of a portion of the polymer. Fourier Transform Infrared (FT-IR) analysis supported this finding, revealing shifts in bands related to the terminal -OH groups of the polymer and the Fe-O bonds, thereby confirming the interaction between the groups. Raman spectroscopy demonstrated that the PLA serves as a protective layer against the oxidation of MNP-FeO in the 18% MNP-FeO/PLA nanocomposite when exposed to a high-power laser (90 mW). Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) analyses confirmed that the synthetic procedure yields materials with dispersed nanoparticles within the PLA matrix without the need for additional reactants.

摘要

基于聚乳酸(PLA)和磁铁矿纳米颗粒(MNP-FeO)的纳米复合材料在生物医学治疗应用中显示出前景。一个关键挑战是提高MNP-FeO的稳定性和分散性。为了解决这个问题,我们使用超声介导和单一铁(II)前驱体合成了MNP-FeO/PLA纳米复合材料,无需表面活性剂或有机溶剂,并在环境条件下进行该过程。所得材料含有18重量%和33重量%的FeO,表现出独特的热行为,其特征在于有两次质量损失:一次在比纯PLA更低的降解温度(T)下,另一次在更高的T下。这表明PLA和MNP-FeO之间的相互作用是通过氢键发生的,增强了一部分聚合物的热稳定性。傅里叶变换红外(FT-IR)分析支持了这一发现,揭示了与聚合物末端-OH基团和Fe-O键相关的谱带发生了位移,从而证实了这些基团之间的相互作用。拉曼光谱表明,当暴露于高功率激光(90 mW)时,在18% MNP-FeO/PLA纳米复合材料中,PLA作为MNP-FeO氧化的保护层。透射电子显微镜(TEM)和扫描电子显微镜(SEM)分析证实,该合成程序产生的材料中纳米颗粒分散在PLA基质中,无需额外的反应物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/9a0a9f1fac6f/polymers-15-04662-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/7354017cc222/polymers-15-04662-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/99ef53fe900c/polymers-15-04662-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/788674e86bd0/polymers-15-04662-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/fbd2f9e12407/polymers-15-04662-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/ac29dfe29fa3/polymers-15-04662-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/9db16d0cc3a5/polymers-15-04662-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/395337fa35bb/polymers-15-04662-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/2cbee2c12209/polymers-15-04662-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/c22cc3f5b042/polymers-15-04662-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/8ad4a2644464/polymers-15-04662-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/346fae0570b9/polymers-15-04662-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/8e27cce61a48/polymers-15-04662-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/6cc8da5c7141/polymers-15-04662-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/981aa81266e5/polymers-15-04662-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/41607fb1450c/polymers-15-04662-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/9a0a9f1fac6f/polymers-15-04662-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/7354017cc222/polymers-15-04662-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/99ef53fe900c/polymers-15-04662-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/788674e86bd0/polymers-15-04662-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/fbd2f9e12407/polymers-15-04662-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/ac29dfe29fa3/polymers-15-04662-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/9db16d0cc3a5/polymers-15-04662-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/395337fa35bb/polymers-15-04662-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/2cbee2c12209/polymers-15-04662-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/c22cc3f5b042/polymers-15-04662-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/8ad4a2644464/polymers-15-04662-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/346fae0570b9/polymers-15-04662-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/8e27cce61a48/polymers-15-04662-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/6cc8da5c7141/polymers-15-04662-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/981aa81266e5/polymers-15-04662-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/41607fb1450c/polymers-15-04662-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee84/10747535/9a0a9f1fac6f/polymers-15-04662-g016.jpg

相似文献

[1]
Sonochemical Synthesis of Magnetite/Poly(lactic acid) Nanocomposites.

Polymers (Basel). 2023-12-11

[2]
Shape Memory Polymer-Based Nanocomposites Magnetically Enhanced with FeO Nanoparticles.

J Inorg Organomet Polym Mater. 2023

[3]
Synthesis and characterization of optically active magnetic PAI/FeO nanocomposites.

Amino Acids. 2018-5-3

[4]
Obtaining of new magnetic nanocomposites based on modified polysaccharide.

Carbohydr Polym. 2013-6-4

[5]
Magnetic Nanocomposite Materials Based on FeO Nanoparticles with Iron and Silica Glycerolates Shell: Synthesis and Characterization.

Int J Mol Sci. 2023-7-29

[6]
Preparation and characterization of polymer-inorganic nanocomposites by in situ melt polycondensation of L-lactic acid and surface-hydroxylated MgO.

Biomacromolecules. 2010-7-12

[7]
Sonochemical assisted synthesis and characterization of magnetic PET/FeO, CA, AS nanocomposites: Morphology and physiochemical properties.

Ultrason Sonochem. 2017-8-8

[8]
Chemically Reduced Graphene Oxide-Reinforced Poly(Lactic Acid)/Poly(Ethylene Glycol) Nanocomposites: Preparation, Characterization, and Applications in Electromagnetic Interference Shielding.

Polymers (Basel). 2019-4-11

[9]
Pathways to Green Perspectives: Production and Characterization of Polylactide (PLA) Nanocomposites Filled with Superparamagnetic Magnetite Nanoparticles.

Materials (Basel). 2021-9-8

[10]
4D Printing of Multifunctional and Biodegradable PLA-PBAT-FeO Nanocomposites with Supreme Mechanical and Shape Memory Properties.

Macromol Rapid Commun. 2025-1

引用本文的文献

[1]
Tailoring the Properties of Magnetite/PLA Nanocomposites: A Composition-Dependent Study.

Polymers (Basel). 2025-6-19

[2]
Construction and application of magnetic surface molecularly imprinted solid-phase extraction for the detection of 5-hydroxytryptamine in peripheral blood.

Mikrochim Acta. 2025-3-11

[3]
Improvement in Crystallization, Thermal, and Mechanical Properties of Flexible Poly(L-lactide)--poly(ethylene glycol)--poly(L-lactide) Bioplastic with Zinc Phenylphosphate.

Polymers (Basel). 2024-4-3

本文引用的文献

[1]
Multifunctional nanocarriers of FeO@PLA-PEG/curcumin for MRI, magnetic hyperthermia and drug delivery.

Nanomedicine (Lond). 2022-9

[2]
Polymers Based on PLA from Synthesis Using D,L-Lactic Acid (or Racemic Lactide) and Some Biomedical Applications: A Short Review.

Polymers (Basel). 2022-6-8

[3]
Formation and Investigation of Mechanical, Thermal, Optical and Wetting Properties of Melt-Spun Multifilament Poly(lactic acid) Yarns with Added Rosins.

Polymers (Basel). 2022-1-19

[4]
Pathways to Green Perspectives: Production and Characterization of Polylactide (PLA) Nanocomposites Filled with Superparamagnetic Magnetite Nanoparticles.

Materials (Basel). 2021-9-8

[5]
MAPLE Coatings Embedded with Essential Oil-Conjugated Magnetite for Anti-Biofilm Applications.

Materials (Basel). 2021-3-25

[6]
Synthesis and Characterization of PLA-Micro-structured Hydroxyapatite Composite Films.

Materials (Basel). 2020-1-8

[7]
Preparation of PLA blends by polycondensation of D,L-lactic acid using supported 12-tungstophosphoric acid as a heterogeneous catalyst.

Heliyon. 2019-5-28

[8]
Ultrasound-assisted synthesis and characterization of magnetite nanoparticles and poly(methyl methacrylate)/magnetite nanocomposites.

Ultrason Sonochem. 2018-5

[9]
A simple approach for the sonochemical synthesis of FeO-guargum nanocomposite and its catalytic reduction of p-nitroaniline.

Ultrason Sonochem. 2018-1

[10]
Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications.

Sci Technol Adv Mater. 2015-4-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索