Suppr超能文献

基于深度学习协同过滤的健康推荐系统

Health Recommendation System using Deep Learning-based Collaborative Filtering.

作者信息

Chinnasamy P, Wong Wing-Keung, Raja A Ambeth, Khalaf Osamah Ibrahim, Kiran Ajmeera, Babu J Chinna

机构信息

Department of Computer Science and Engineering, MLR Institute of Technology, Hyderabad, India.

Asia University, Taiwan.

出版信息

Heliyon. 2023 Nov 24;9(12):e22844. doi: 10.1016/j.heliyon.2023.e22844. eCollection 2023 Dec.

Abstract

The crucial aspect of the medical sector is healthcare in today's modern society. To analyze a massive quantity of medical information, a medical system is necessary to gain additional perspectives and facilitate prediction and diagnosis. This device should be intelligent enough to analyze a patient's state of health through social activities, individual health information, and behavior analysis. The Health Recommendation System (HRS) has become an essential mechanism for medical care. In this sense, efficient healthcare networks are critical for medical decision-making processes. The fundamental purpose is to maintain that sensitive information can be shared only at the right moment while guaranteeing the effectiveness of data, authenticity, security, and legal concerns. As some people use social media to recognize their medical problems, healthcare recommendation systems need to generate findings like diagnosis recommendations, medical insurance, medical passageway-based care strategies, and homeopathic remedies associated with a patient's health status. New studies aimed at the use of vast numbers of health information by integrating multidisciplinary data from various sources are addressed, which also decreases the burden and health care costs. This article presents a recommended intelligent HRS using the deep learning system of the Restricted Boltzmann Machine (RBM)-Coevolutionary Neural Network (CNN) that provides insights on how data mining techniques could be used to introduce an efficient and effective health recommendation systems engine and highlights the pharmaceutical industry's ability to translate from either a conventional scenario towards a more personalized. We developed our proposed system using TensorFlow and Python. We evaluate the suggested method's performance using distinct error quantities compared to alternative methods using the health care dataset. Furthermore, the suggested approach's accuracy, precision, recall, and F-measure were compared with the current methods.

摘要

在当今现代社会,医疗领域的关键方面是医疗保健。为了分析大量的医疗信息,需要一个医疗系统来获取更多视角并促进预测和诊断。该设备应足够智能,能够通过社交活动、个人健康信息和行为分析来分析患者的健康状况。健康推荐系统(HRS)已成为医疗保健的重要机制。从这个意义上说,高效的医疗网络对于医疗决策过程至关重要。其根本目的是确保敏感信息仅在适当的时候共享,同时保证数据的有效性、真实性、安全性和法律合规性。由于一些人利用社交媒体来识别自己的医疗问题,医疗保健推荐系统需要生成诸如诊断建议、医疗保险、基于医疗通道的护理策略以及与患者健康状况相关的顺势疗法等结果。本文探讨了旨在通过整合来自各种来源的多学科数据来利用大量健康信息的新研究,这也减轻了负担并降低了医疗成本。本文提出了一种使用受限玻尔兹曼机(RBM)-协同进化神经网络(CNN)深度学习系统的智能HRS推荐系统,该系统提供了关于如何使用数据挖掘技术引入高效有效的健康推荐系统引擎的见解,并强调了制药行业从传统场景向更个性化转变的能力。我们使用TensorFlow和Python开发了我们提出的系统。与使用医疗保健数据集的替代方法相比,我们使用不同的误差量来评估所建议方法的性能。此外,还将所建议方法的准确率、精确率、召回率和F值与当前方法进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48df/10746410/5dc0e5bcdf1c/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验