Suppr超能文献

**处方精准度**:智能处方系统全面综述

Prescription Precision: A Comprehensive Review of Intelligent Prescription Systems.

机构信息

Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India.

Department of Pharmacology, Aman Pharmacy College, Udaipurwati, Rajasthan 333307, India.

出版信息

Curr Pharm Des. 2024;30(34):2671-2684. doi: 10.2174/0113816128321623240719104337.

Abstract

Intelligent Prescription Systems (IPS) represent a promising frontier in healthcare, offering the potential to optimize medication selection, dosing, and monitoring tailored to individual patient needs. This comprehensive review explores the current landscape of IPS, encompassing various technological approaches, applications, benefits, and challenges. IPS leverages advanced computational algorithms, machine learning techniques, and big data analytics to analyze patient-specific factors, such as medical history, genetic makeup, biomarkers, and lifestyle variables. By integrating this information with evidence-based guidelines, clinical decision support systems, and real-time patient data, IPS generates personalized treatment recommendations that enhance therapeutic outcomes while minimizing adverse effects and drug interactions. Key components of IPS include predictive modeling, drug-drug interaction detection, adverse event prediction, dose optimization, and medication adherence monitoring. These systems offer clinicians invaluable decision-support tools to navigate the complexities of medication management, particularly in the context of polypharmacy and chronic disease management. While IPS holds immense promise for improving patient care and reducing healthcare costs, several challenges must be addressed. These include data privacy and security concerns, interoperability issues, integration with existing electronic health record systems, and clinician adoption barriers. Additionally, the regulatory landscape surrounding IPS requires clarification to ensure compliance with evolving healthcare regulations. Despite these challenges, the rapid advancements in artificial intelligence, data analytics, and digital health technologies are driving the continued evolution and adoption of IPS. As precision medicine gains momentum, IPS is poised to play a central role in revolutionizing medication management, ultimately leading to more effective, personalized, and patient-centric healthcare delivery.

摘要

智能处方系统(IPS)代表了医疗保健领域的一个有前途的前沿领域,有潜力优化药物选择、剂量和监测,以满足个体患者的需求。本综述全面探讨了 IPS 的现状,包括各种技术方法、应用、益处和挑战。IPS 利用先进的计算算法、机器学习技术和大数据分析来分析患者的特定因素,如病史、基因构成、生物标志物和生活方式变量。通过将这些信息与基于证据的指南、临床决策支持系统和实时患者数据相结合,IPS 生成个性化的治疗建议,提高治疗效果,同时最大限度地减少不良反应和药物相互作用。IPS 的关键组成部分包括预测建模、药物相互作用检测、不良事件预测、剂量优化和药物依从性监测。这些系统为临床医生提供了有价值的决策支持工具,帮助他们应对药物管理的复杂性,特别是在多药治疗和慢性病管理的情况下。尽管 IPS 有很大的潜力改善患者护理和降低医疗成本,但仍需解决几个挑战。这些挑战包括数据隐私和安全问题、互操作性问题、与现有电子健康记录系统的集成以及临床医生的采用障碍。此外,围绕 IPS 的监管环境需要澄清,以确保符合不断发展的医疗保健法规。尽管存在这些挑战,但人工智能、数据分析和数字健康技术的快速发展正在推动 IPS 的持续发展和采用。随着精准医学的兴起,IPS 有望在药物管理的革命化中发挥核心作用,最终实现更有效、个性化和以患者为中心的医疗保健服务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验