Suppr超能文献

使用预训练卷积神经网络模型进行高效的脑肿瘤检测与分类。

An efficient brain tumor detection and classification using pre-trained convolutional neural network models.

作者信息

Rao K Nishanth, Khalaf Osamah Ibrahim, Krishnasree V, Kumar Aruru Sai, Alsekait Deema Mohammed, Priyanka S Siva, Alattas Ahmed Saleh, AbdElminaam Diaa Salama

机构信息

Department of ECE, MLR Institute of Technology, Hyderabad, India.

Department of Solar, Al-Nahrain Research Center for Renewable Energy, Al-Nahrain University, Jadriya, Baghdad, Iraq.

出版信息

Heliyon. 2024 Aug 26;10(17):e36773. doi: 10.1016/j.heliyon.2024.e36773. eCollection 2024 Sep 15.

Abstract

In cases of brain tumors, some brain cells experience abnormal and rapid growth, leading to the development of tumors. Brain tumors represent a significant source of illness affecting the brain. Magnetic Resonance Imaging (MRI) stands as a well-established and coherent diagnostic method for brain cancer detection. However, the resulting MRI scans produce a vast number of images, which require thorough examination by radiologists. Manual assessment of these images consumes considerable time and may result in inaccuracies in cancer detection. Recently, deep learning has emerged as a reliable tool for decision-making tasks across various domains, including finance, medicine, cybersecurity, agriculture, and forensics. In the context of brain cancer diagnosis, Deep Learning and Machine Learning algorithms applied to MRI data enable rapid prognosis. However, achieving higher accuracy is crucial for providing appropriate treatment to patients and facilitating prompt decision-making by radiologists. To address this, we propose the use of Convolutional Neural Networks (CNN) for brain tumor detection. Our approach utilizes a dataset consisting of two classes: three representing different tumor types and one representing non-tumor samples. We present a model that leverages pre-trained CNNs to categorize brain cancer cases. Additionally, data augmentation techniques are employed to augment the dataset size. The effectiveness of our proposed CNN model is evaluated through various metrics, including validation loss, confusion matrix, and overall loss. The proposed approach employing ResNet50 and EfficientNet demonstrated higher levels of accuracy, precision, and recall in detecting brain tumors.

摘要

在脑肿瘤病例中,一些脑细胞会经历异常且快速的生长,从而导致肿瘤的形成。脑肿瘤是影响大脑的一个重要疾病来源。磁共振成像(MRI)是一种成熟且连贯的脑癌检测诊断方法。然而,由此产生的MRI扫描会生成大量图像,需要放射科医生进行全面检查。对这些图像进行人工评估会消耗大量时间,并且在癌症检测中可能会导致不准确。最近,深度学习已成为跨多个领域(包括金融、医学、网络安全、农业和法医学)进行决策任务的可靠工具。在脑癌诊断的背景下,应用于MRI数据的深度学习和机器学习算法能够实现快速预后。然而,实现更高的准确率对于为患者提供适当的治疗以及促进放射科医生迅速做出决策至关重要。为了解决这个问题,我们提出使用卷积神经网络(CNN)进行脑肿瘤检测。我们的方法利用了一个由两类组成的数据集:三类代表不同的肿瘤类型,一类代表非肿瘤样本。我们提出了一个利用预训练的CNN对脑癌病例进行分类的模型。此外,还采用了数据增强技术来增加数据集的大小。我们提出的CNN模型的有效性通过各种指标进行评估,包括验证损失、混淆矩阵和总体损失。所提出的采用ResNet50和EfficientNet的方法在检测脑肿瘤方面表现出更高的准确率、精确率和召回率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25b0/11401085/1dd7c1b5e7b4/gr001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验