Nerrienet Nicolas, Peyret Rémy, Sockeel Marie, Sockeel Stéphane
Primaa, Paris, France.
J Med Imaging (Bellingham). 2023 Nov;10(6):067502. doi: 10.1117/1.JMI.10.6.067502. Epub 2023 Dec 22.
Generalization is one of the main challenges of computational pathology. Slide preparation heterogeneity and the diversity of scanners lead to poor model performance when used on data from medical centers not seen during training. In order to achieve stain invariance in breast invasive carcinoma patch classification, we implement a stain translation strategy using cycleGANs for unsupervised image-to-image translation. Those models often suffer from a lack of proper metrics to monitor and stop the training at a particular point. We also introduce a method to solve this issue.
We compare three CycleGAN-based approaches to a baseline classification model obtained without any stain invariance strategy. Two of the proposed approaches use CycleGAN's translations at inference or training to build stain-specific classification models. The last method uses them for stain data augmentation during training. This constrains the classification model to learn stain-invariant features. Regarding CycleGANs' training monitoring, we leverage Fréchet inception distance between generated and real samples and use it as a stopping criterion. We compare CycleGANs' models stopped using this criterion and models stopped at a fixed number of epochs.
Baseline metrics are set by training and testing the baseline classification model on a reference stain. We assessed performances using three medical centers with H&E and H&E&S staining. Every approach tested in this study improves baseline metrics without needing labels on target stains. The stain augmentation-based approach produced the best results on every stain. Each method's pros and cons are studied and discussed. Moreover, FID stopping criterion proves superiority to methods using a predefined number of training epoch and has the benefit of not requiring any visual inspection of CycleGAN results.
We introduce a method to attain stain invariance for breast invasive carcinoma classification by leveraging CycleGAN's abilities to produce realistic translations between various stains. Moreover, we propose a systematical method for scheduling CycleGANs' trainings by using FID as a stopping criterion and prove its superiority to other methods. Finally, we give an insight on the minimal amount of data required for CycleGAN training in a digital histopathology setting.
泛化是计算病理学的主要挑战之一。玻片制备的异质性和扫描仪的多样性导致模型在用于训练期间未见过的医学中心的数据时性能不佳。为了在乳腺浸润性癌切片分类中实现染色不变性,我们使用循环生成对抗网络(CycleGAN)实施一种染色转换策略,用于无监督的图像到图像转换。这些模型常常缺乏合适的指标来监测并在特定点停止训练。我们还介绍了一种解决此问题的方法。
我们将三种基于CycleGAN的方法与未采用任何染色不变性策略获得的基线分类模型进行比较。所提出的方法中有两种在推理或训练时使用CycleGAN的转换来构建特定染色的分类模型。最后一种方法在训练期间将它们用于染色数据增强。这限制分类模型学习染色不变特征。关于CycleGAN的训练监测,我们利用生成样本与真实样本之间的弗雷歇因距离(Fréchet inception distance),并将其用作停止标准。我们比较使用此标准停止训练的CycleGAN模型和在固定轮次停止训练的模型。
通过在参考染色上训练和测试基线分类模型来设定基线指标。我们使用三个拥有苏木精和伊红(H&E)染色以及H&E&S染色的医学中心评估性能。本研究中测试的每种方法都在无需目标染色标签的情况下提高了基线指标。基于染色增强的方法在每种染色上都产生了最佳结果。研究并讨论了每种方法的优缺点。此外,弗雷歇因距离停止标准证明比使用预定义训练轮次的方法更具优势,并且具有无需对CycleGAN结果进行任何视觉检查的优点。
我们介绍了一种通过利用CycleGAN在各种染色之间生成逼真转换的能力来实现乳腺浸润性癌分类染色不变性的方法。此外,我们提出了一种通过使用弗雷歇因距离作为停止标准来安排CycleGAN训练的系统方法,并证明了其相对于其他方法的优越性。最后,我们深入了解了数字组织病理学环境中CycleGAN训练所需的最少数据量。