Suppr超能文献

从CT图像中检测新冠肺炎时,多少由双向生成对抗网络(BiGAN)和循环一致对抗网络(CycleGAN)学习到的隐藏特征是有效的?一项对比研究。

How much BiGAN and CycleGAN-learned hidden features are effective for COVID-19 detection from CT images? A comparative study.

作者信息

Sarv Ahrabi Sima, Momenzadeh Alireza, Baccarelli Enzo, Scarpiniti Michele, Piazzo Lorenzo

机构信息

Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy.

出版信息

J Supercomput. 2023;79(3):2850-2881. doi: 10.1007/s11227-022-04775-y. Epub 2022 Aug 26.

Abstract

Bidirectional generative adversarial networks (BiGANs) and cycle generative adversarial networks (CycleGANs) are two emerging machine learning models that, up to now, have been used as generative models, i.e., to generate output data sampled from a target probability distribution. However, these models are also equipped with encoding modules, which, after weakly supervised training, could be, in principle, exploited for the extraction of hidden features from the input data. At the present time, how these extracted features could be effectively exploited for classification tasks is still an unexplored field. Hence, motivated by this consideration, in this paper, we develop and numerically test the performance of a novel inference engine that relies on the exploitation of BiGAN and CycleGAN-learned hidden features for the detection of COVID-19 disease from other lung diseases in computer tomography (CT) scans. In this respect, the main contributions of the paper are twofold. First, we develop a kernel density estimation (KDE)-based inference method, which, in the training phase, leverages the hidden features extracted by BiGANs and CycleGANs for estimating the ( unknown) probability density function (PDF) of the CT scans of COVID-19 patients and, then, in the inference phase, uses it as a target COVID-PDF for the detection of COVID diseases. As a second major contribution, we numerically evaluate and compare the classification accuracies of the implemented BiGAN and CycleGAN models against the ones of some state-of-the-art methods, which rely on the unsupervised training of convolutional autoencoders (CAEs) for attaining feature extraction. The performance comparisons are carried out by considering a spectrum of different training loss functions and distance metrics. The obtained classification accuracies of the proposed CycleGAN-based (resp., BiGAN-based) models outperform the corresponding ones of the considered benchmark CAE-based models of about 16% (resp., 14%).

摘要

双向生成对抗网络(BiGANs)和循环生成对抗网络(CycleGANs)是两种新兴的机器学习模型,到目前为止,它们一直被用作生成模型,即生成从目标概率分布中采样的输出数据。然而,这些模型还配备了编码模块,经过弱监督训练后,原则上可以用于从输入数据中提取隐藏特征。目前,如何将这些提取的特征有效地用于分类任务仍然是一个未被探索的领域。因此,出于这种考虑,在本文中,我们开发并通过数值测试了一种新型推理引擎的性能,该引擎依赖于利用BiGAN和CycleGAN学习到的隐藏特征,从计算机断层扫描(CT)中检测新冠肺炎与其他肺部疾病。在这方面,本文的主要贡献有两个方面。首先,我们开发了一种基于核密度估计(KDE)的推理方法,该方法在训练阶段利用BiGANs和CycleGANs提取的隐藏特征来估计新冠肺炎患者CT扫描的(未知)概率密度函数(PDF),然后在推理阶段将其用作检测新冠肺炎疾病的目标COVID - PDF。作为第二个主要贡献,我们通过数值评估和比较所实现的BiGAN和CycleGAN模型与一些依赖卷积自动编码器(CAEs)的无监督训练来进行特征提取的现有最先进方法的分类准确率。性能比较是通过考虑一系列不同的训练损失函数和距离度量来进行的。所提出的基于CycleGAN(相应地,基于BiGAN)的模型所获得的分类准确率比所考虑的基于基准CAE的模型相应的准确率高出约16%(相应地,14%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b2f/9411851/061820564237/11227_2022_4775_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验