Optical Imaging and Brain Sciences Medical Discovery Team, Department of Neuroscience, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA.
Optical Imaging and Brain Sciences Medical Discovery Team, Department of Neuroscience, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA.
J Neurosci Methods. 2024 Mar;403:110051. doi: 10.1016/j.jneumeth.2023.110051. Epub 2023 Dec 23.
Perception and behavior require coordinated activity of thousands of neurons operating in networks that span millimeters of brain area. In vivo calcium imaging approaches have proven exceptionally powerful for examining the structure of these networks at large scales, and optogenetics can allow for causal manipulations of large populations of neurons. However, realizing the full potential of these techniques requires the ability to simultaneously measure and manipulate distinct circuit elements on the scale of millimeters.
We describe an opto-macroscope, an artifact-free, all-optical system capable of delivering patterned optogenetic stimulation with high spatial and temporal resolution across millimeters of brain while simultaneously imaging functional neural activity.
We find that this approach provides direct manipulation of cortical regions ranging from hundreds of microns to several millimeters in area, allowing for the perturbation of individual brain areas or networks of functional domains. Using this system we find that spatially complex endogenous networks in the developing ferret visual cortex can be readily reactivated by precisely designed patterned optogenetic stimuli.
Our opto-macroscope extends current all-optical optogenetic approaches which operate on a cellular scale with multiphoton stimulation, and are poorly suited to investigate the millimeter-scale of many functional networks. It also builds upon other mesoscopic optogenetic techniques that lack simultaneous optical readouts of neural activity.
The large-scale all-optical capabilities of our system make it a powerful new tool for investigating the contribution of cortical domains and brain areas to the functional neural networks that underlie perception and behavior.
感知和行为需要数千个神经元在跨越毫米级脑区的网络中协调活动。在体钙成像方法已被证明在大规模检查这些网络结构方面具有非凡的优势,而光遗传学可以对大量神经元进行因果操纵。然而,要充分发挥这些技术的潜力,需要能够在毫米级尺度上同时测量和操纵不同的电路元件。
我们描述了一种光宏观显微镜,这是一种无伪影的全光学系统,能够在毫米级的大脑范围内以高时空分辨率传递模式化的光遗传学刺激,同时对功能神经活动进行成像。
我们发现,这种方法可以直接操纵面积从几百微米到几毫米的皮层区域,从而可以对单个脑区或功能域网络进行干扰。使用该系统,我们发现,通过精心设计的模式化光遗传学刺激,可以很容易地重新激活发育中的雪貂视觉皮层中空间复杂的内源性网络。
我们的光宏观显微镜扩展了当前的全光学光遗传学方法,这些方法在细胞尺度上通过多光子刺激进行操作,并且不适合研究许多功能网络的毫米级尺度。它还建立在其他缺乏神经活动光学同时读取的介观光遗传学技术的基础上。
我们的系统的大规模全光学能力使其成为研究皮层区域和脑区对感知和行为所基于的功能神经网络的贡献的强大新工具。