Suppr超能文献

三维多点随机光刺激技术(3D-MAP)。

Three-dimensional multi-site random access photostimulation (3D-MAP).

机构信息

Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, Berkeley, United States.

Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States.

出版信息

Elife. 2022 Feb 14;11:e73266. doi: 10.7554/eLife.73266.

Abstract

Optical control of neural ensemble activity is crucial for understanding brain function and disease, yet no technology can achieve optogenetic control of very large numbers of neurons at an extremely fast rate over a large volume. State-of-the-art multiphoton holographic optogenetics requires high-power illumination that only addresses relatively small populations of neurons in parallel. Conversely, one-photon holographic techniques can stimulate more neurons with two to three orders lower power, but with limited resolution or addressable volume. Perhaps most problematically, two-photon holographic optogenetic systems are extremely expensive and sophisticated which has precluded their broader adoption in the neuroscience community. To address this technical gap, we introduce a new one-photon light sculpting technique, three-dimensional multi-site random access photostimulation (3D-MAP), that overcomes these limitations by modulating light dynamically, both in the spatial and in the angular domain at multi-kHz rates. We use 3D-MAP to interrogate neural circuits in 3D and demonstrate simultaneous photostimulation and imaging of dozens of user-selected neurons in the intact mouse brain in vivo with high spatio-temporal resolution. 3D-MAP can be broadly adopted for high-throughput all-optical interrogation of brain circuits owing to its powerful combination of scale, speed, simplicity, and cost.

摘要

光控神经集合活动对于理解大脑功能和疾病至关重要,但目前没有任何技术可以在大体积范围内以极快的速度对非常大量的神经元进行光遗传学控制。最先进的多光子全息光遗传学需要高功率照明,只能并行地对相对较少的神经元群体进行寻址。相反,单光子全息技术可以用低两到三个数量级的功率刺激更多的神经元,但分辨率或可寻址体积有限。也许最成问题的是,双光子全息光遗传学系统非常昂贵和复杂,这限制了它们在神经科学界的更广泛采用。为了解决这个技术差距,我们引入了一种新的单光子光塑形技术,三维多点随机访问光刺激(3D-MAP),通过在空间和角度域以多千赫兹的速率动态调制光来克服这些限制。我们使用 3D-MAP 在 3D 中对神经回路进行询问,并在体内演示了对完整小鼠大脑中数十个用户选择的神经元进行同时光刺激和成像,具有高时空分辨率。3D-MAP 可以广泛应用于高通量全光学脑回路检测,因为它具有强大的规模、速度、简单性和成本的组合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验