Wang Binhao, Fang Ziyi, Jiang Qinyao, Tang Dafu, Fan Sicheng, Huang Xiaojuan, Li Junbin, Peng Dong-Liang, Wei Qiulong
Department of Materials Science and Engineering, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People's Republic of China.
ACS Nano. 2024 Jan 9;18(1):798-808. doi: 10.1021/acsnano.3c09189. Epub 2023 Dec 27.
Electrochemical capacitors have faced the limitations of low energy density for decades, owing to the low capacity of electric double-layer capacitance (EDLC)-type positive electrodes. In this work, we reveal the functions of interlayer confined water in iron vanadate (FeVO·HO) for sodium-ion storage in nonaqueous electrolyte. Using an electrochemical quartz crystal microbalance, Raman, and X-ray diffraction and X-ray photoelectron spectroscopy, we demonstrate that both nonfaradaic (surficial EDLC) and faradaic (pseudocapacitance-dominated Na intercalation) processes are involved in the charge storages. The interlayer confined water is able to accelerate the fast Na intercalations and is highly stable (without the removal of water or co-intercalation of [Na-diglyme]) in the nonaqueous environment. Furthermore, coupling the pseudocapacitive FeVO·HO with EDLC-type activated carbon (FeVO-AC) as the positive electrode brings comprehensive enhancements, displaying the enlarged compaction density of ∼2 times, specific capacity of ∼1.5 times, and volumetric capacity of ∼3 times compared to the AC electrode. Furthermore, the as-assembled hybrid sodium-ion capacitor, consisting of an FeVO-AC positive electrode and a mesocarbon microbeads negative electrode, shows a high energy density of 108 Wh kg at 108 W kg and 15.3 Wh kg at 8.3 kW kg. Our results offer an emerging route for improving both specific and volumetric energy densities of electrochemical capacitors.
几十年来,由于双电层电容(EDLC)型正极的低容量,电化学电容器一直面临着能量密度低的限制。在这项工作中,我们揭示了钒酸铁(FeVO·HO)中层间受限水在非水电解质中钠离子存储的作用。通过使用电化学石英晶体微天平、拉曼光谱、X射线衍射和X射线光电子能谱,我们证明了电荷存储过程涉及非法拉第(表面EDLC)和法拉第(以赝电容为主的Na嵌入)过程。层间受限水能够加速快速的Na嵌入,并且在非水环境中高度稳定(不会去除水或[Na-二甘醇二甲醚]的共嵌入)。此外,将赝电容性的FeVO·HO与EDLC型活性炭(FeVO-AC)耦合作为正极带来了全面的提升,与AC电极相比,压实密度增大了约2倍,比容量增大了约1.5倍,体积容量增大了约3倍。此外,由FeVO-AC正极和中间相炭微球负极组成的组装混合钠离子电容器在108 W kg时显示出108 Wh kg的高能量密度,在8.3 kW kg时显示出15.3 Wh kg的高能量密度。我们的结果为提高电化学电容器的比能量密度和体积能量密度提供了一条新途径。