Liu Lu, Fan Sicheng, Wang Wendi, Yin Sixing, Lv Zirui, Zhang Jie, Zhang Jingyu, Yang Lanhao, Ma Yuzhu, Wei Qiulong, Zhao Dongyuan, Lan Kun
College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China.
Department of Material Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
JACS Au. 2024 Jul 2;4(7):2666-2675. doi: 10.1021/jacsau.4c00421. eCollection 2024 Jul 22.
Mesoporous materials endowed with a hollow structure offer ample opportunities due to their integrated functionalities; however, current approaches mainly rely on the recruitment of solid rigid templates, and feasible strategies with better simplicity and tunability remain infertile. Here, we report a novel emulsion-driven coassembly method for constructing a highly tailored hollow architecture in mesoporous carbon, which can be completely processed on oil-water liquid interfaces instead of a solid rigid template. Such a facile and flexible methodology relies on the subtle employment of a 1,3,5-trimethylbenzene (TMB) additive, which acts as both an emulsion template and a swelling agent, leading to a compatible integration of oil droplets and composite micelles. The solution-based assembly process also shows high controllability, endowing the hollow carbon mesostructure with a uniform morphology of hundreds of nanometers and tunable cavities from 0 to 130 nm in diameter and porosities (mesopore sizes 2.5-7.7 nm; surface area 179-355 m g). Because of the unique features in permeability, diffusion, and surface access, the hollow mesoporous carbon nanospheres exhibit excellent high rate and cycling performances for sodium-ion storage. Our study reveals a cooperative assembly on the liquid interface, which could provide an alternative toolbox for constructing delicate mesostructures and complex hierarchies toward advanced technologies.
具有中空结构的介孔材料因其集成功能而提供了充足的机会;然而,目前的方法主要依赖于使用固体刚性模板,而具有更好简单性和可调性的可行策略仍然缺乏。在此,我们报告了一种新颖的乳液驱动共组装方法,用于在介孔碳中构建高度定制的中空结构,该方法可以完全在油水液体界面上进行,而无需固体刚性模板。这种简便灵活的方法依赖于巧妙使用1,3,5-三甲基苯(TMB)添加剂,它既作为乳液模板又作为膨胀剂,导致油滴和复合胶束的相容整合。基于溶液的组装过程还显示出高度可控性,赋予中空碳介观结构数百纳米的均匀形态以及直径从0到130 nm的可调空腔和孔隙率(介孔尺寸2.5 - 7.7 nm;表面积179 - 355 m²/g)。由于在渗透性、扩散性和表面可及性方面的独特特性,中空介孔碳纳米球在钠离子存储方面表现出优异的高倍率和循环性能。我们的研究揭示了在液体界面上的协同组装,这可为构建精细的介观结构和复杂层次结构以实现先进技术提供一种替代工具箱。