Suppr超能文献

SkinViT:一种基于 Transformer 的黑色素瘤和非黑色素瘤分类方法。

SkinViT: A transformer based method for Melanoma and Nonmelanoma classification.

机构信息

School of Electronics Engineering, Beijing University of Posts and Telecommunications, Beijing, China.

School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China.

出版信息

PLoS One. 2023 Dec 27;18(12):e0295151. doi: 10.1371/journal.pone.0295151. eCollection 2023.

Abstract

Over the past few decades, skin cancer has emerged as a major global health concern. The efficacy of skin cancer treatment greatly depends upon early diagnosis and effective treatment. The automated classification of Melanoma and Nonmelanoma is quite challenging task due to presence of high visual similarities across different classes and variabilities within each class. According to the best of our knowledge, this study represents the classification of Melanoma and Nonmelanoma utilising Basal Cell Carcinoma (BCC) and Squamous Cell Carcinoma (SCC) under the Nonmelanoma class for the first time. Therefore, this research focuses on automated detection of different skin cancer types to provide assistance to the dermatologists in timely diagnosis and treatment of Melanoma and Nonmelanoma patients. Recently, artificial intelligence (AI) methods have gained popularity where Convolutional Neural Networks (CNNs) are employed to accurately classify various skin diseases. However, CNN has limitation in its ability to capture global contextual information which may lead to missing important information. In order to address this issue, this research explores the outlook attention mechanism inspired by vision outlooker, which improves important features while suppressing noisy features. The proposed SkinViT architecture integrates an outlooker block, transformer block and MLP head block to efficiently capture both fine level and global features in order to enhance the accuracy of Melanoma and Nonmelanoma classification. The proposed SkinViT method is assessed by different performance metrics such as recall, precision, classification accuracy, and F1 score. We performed extensive experiments on three datasets, Dataset1 which is extracted from ISIC2019, Dataset2 collected from various online dermatological database and Dataset3 combines both datasets. The proposed SkinViT achieved 0.9109 accuracy on Dataset1, 0.8911 accuracy on Dataset3 and 0.8611 accuracy on Dataset2. Moreover, the proposed SkinViT method outperformed other SOTA models and displayed higher accuracy compared to the previous work in the literature. The proposed method demonstrated higher performance efficiency in classification of Melanoma and Nonmelanoma dermoscopic images. This work is expected to inspire further research in implementing a system for detecting skin cancer that can assist dermatologists in timely diagnosing Melanoma and Nonmelanoma patients.

摘要

在过去的几十年中,皮肤癌已成为一个主要的全球健康问题。皮肤癌的治疗效果在很大程度上取决于早期诊断和有效治疗。由于不同类别之间存在高度的视觉相似性,以及每个类别内部存在可变性,因此,对黑素瘤和非黑素瘤进行自动分类是一项极具挑战性的任务。据我们所知,这项研究首次利用基底细胞癌(BCC)和鳞状细胞癌(SCC)在非黑素瘤类别下对黑素瘤和非黑素瘤进行分类。因此,本研究专注于不同皮肤癌类型的自动检测,为皮肤科医生及时诊断和治疗黑素瘤和非黑素瘤患者提供帮助。最近,人工智能(AI)方法得到了广泛应用,其中卷积神经网络(CNN)被用于准确分类各种皮肤疾病。然而,CNN 在捕捉全局上下文信息方面存在局限性,这可能导致重要信息的缺失。为了解决这个问题,本研究探索了受视觉观测器启发的前景注意机制,该机制可以改善重要特征,同时抑制噪声特征。所提出的 SkinViT 架构集成了一个观测器块、一个转换器块和一个 MLP 头块,以有效地捕捉精细和全局特征,从而提高黑素瘤和非黑素瘤分类的准确性。所提出的 SkinViT 方法通过召回率、精度、分类准确率和 F1 分数等不同性能指标进行评估。我们在三个数据集上进行了广泛的实验,数据集 1 是从 ISIC2019 中提取的,数据集 2 是从各种在线皮肤科数据库中收集的,数据集 3 则结合了这两个数据集。所提出的 SkinViT 在数据集 1 上实现了 0.9109 的准确率,在数据集 3 上实现了 0.8911 的准确率,在数据集 2 上实现了 0.8611 的准确率。此外,所提出的 SkinViT 方法优于其他 SOTA 模型,并且与文献中的先前工作相比显示出更高的准确性。所提出的方法在黑素瘤和非黑素瘤皮肤镜图像的分类中表现出更高的性能效率。这项工作有望激发进一步的研究,以开发一种能够帮助皮肤科医生及时诊断黑素瘤和非黑素瘤患者的皮肤癌检测系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b21e/10752524/e08368d15093/pone.0295151.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验