Suppr超能文献

基于定制化迁移学习和三重注意力的多层次集成方法用于皮肤病变分类。

A Multi-level ensemble approach for skin lesion classification using Customized Transfer Learning with Triple Attention.

机构信息

Department of Computer Science and Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh.

Department of Computer Science and Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh.

出版信息

PLoS One. 2024 Oct 24;19(10):e0309430. doi: 10.1371/journal.pone.0309430. eCollection 2024.

Abstract

Skin lesions encompass a variety of skin abnormalities, including skin diseases that affect structure and function, and skin cancer, which can be fatal and arise from abnormal cell growth. Early detection of lesions and automated prediction is crucial, yet accurately identifying responsible regions post-dominance dispersion remains a challenge in current studies. Thus, we propose a Convolutional Neural Network (CNN)-based approach employing a Customized Transfer Learning (CTL) model and Triple Attention (TA) modules in conjunction with Ensemble Learning (EL). While Ensemble Learning has become an integral component of both Machine Learning (ML) and Deep Learning (DL) methodologies, a specific technique ensuring optimal allocation of weights for each model's prediction is currently lacking. Consequently, the primary objective of this study is to introduce a novel method for determining optimal weights to aggregate the contributions of models for achieving desired outcomes. We term this approach "Information Gain Proportioned Averaging (IGPA)," further refining it to "Multi-Level Information Gain Proportioned Averaging (ML-IGPA)," which specifically involves the utilization of IGPA at multiple levels. Empirical evaluation of the HAM1000 dataset demonstrates that our approach achieves 94.93% accuracy with ML-IGPA, surpassing state-of-the-art methods. Given previous studies' failure to elucidate the exact focus of black-box models on specific regions, we utilize the Gradient Class Activation Map (GradCAM) to identify responsible regions and enhance explainability. Our study enhances both accuracy and interpretability, facilitating early diagnosis and preventing the consequences of neglecting skin lesion detection, thereby addressing issues related to time, accessibility, and costs.

摘要

皮肤病变包括各种皮肤异常,包括影响结构和功能的皮肤病,以及皮肤癌,皮肤癌可能是致命的,并且是由异常细胞生长引起的。病变的早期检测和自动预测至关重要,但在目前的研究中,准确识别责任区域仍然是一个挑战。因此,我们提出了一种基于卷积神经网络(CNN)的方法,该方法采用定制迁移学习(CTL)模型和三重注意(TA)模块结合集成学习(EL)。虽然集成学习已经成为机器学习(ML)和深度学习(DL)方法的重要组成部分,但目前缺乏一种确保为每个模型的预测分配最佳权重的特定技术。因此,本研究的主要目标是引入一种确定最佳权重的新方法,以聚合模型的贡献,以达到预期的结果。我们将这种方法称为“信息增益比例平均(IGPA)”,进一步将其细化为“多级信息增益比例平均(ML-IGPA)”,它特别涉及在多个级别上使用 IGPA。对 HAM1000 数据集的实证评估表明,我们的方法在 ML-IGPA 下达到 94.93%的准确率,超过了最先进的方法。鉴于之前的研究未能阐明黑盒模型在特定区域的确切关注点,我们利用梯度类激活图(GradCAM)来识别责任区域并提高可解释性。我们的研究提高了准确性和可解释性,促进了早期诊断,并防止了忽视皮肤病变检测的后果,从而解决了与时间、可及性和成本相关的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c53/11500880/73a819ce96f6/pone.0309430.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验