Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America.
Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America.
PLoS Comput Biol. 2023 Dec 27;19(12):e1011651. doi: 10.1371/journal.pcbi.1011651. eCollection 2023 Dec.
Bacterial pathogens adapt their metabolism to the plant environment to successfully colonize their hosts. In our efforts to uncover the metabolic pathways that contribute to the colonization of Arabidopsis thaliana leaves by Pseudomonas syringae pv tomato DC3000 (Pst DC3000), we created iPst19, an ensemble of 100 genome-scale network reconstructions of Pst DC3000 metabolism. We developed a novel approach for gene essentiality screens, leveraging the predictive power of iPst19 to identify core and ancillary condition-specific essential genes. Constraining the metabolic flux of iPst19 with Pst DC3000 gene expression data obtained from naïve-infected or pre-immunized-infected plants, revealed changes in bacterial metabolism imposed by plant immunity. Machine learning analysis revealed that among other amino acids, branched-chain amino acids (BCAAs) metabolism significantly contributed to the overall metabolic status of each gene-expression-contextualized iPst19 simulation. These predictions were tested and confirmed experimentally. Pst DC3000 growth and gene expression analysis showed that BCAAs suppress virulence gene expression in vitro without affecting bacterial growth. In planta, however, an excess of BCAAs suppress the expression of virulence genes at the early stages of infection and significantly impair the colonization of Arabidopsis leaves. Our findings suggesting that BCAAs catabolism is necessary to express virulence and colonize the host. Overall, this study provides valuable insights into how plant immunity impacts Pst DC3000 metabolism, and how bacterial metabolism impacts the expression of virulence.
细菌病原体通过适应其代谢来成功地在植物环境中定植其宿主。在我们努力揭示有助于丁香假单胞菌 pv 番茄 DC3000(Pst DC3000)定植拟南芥叶片的代谢途径的过程中,我们创建了 iPst19,这是一个由 100 个基因组规模的 Pst DC3000 代谢网络重建组成的集合。我们开发了一种新的基因必需性筛选方法,利用 iPst19 的预测能力来鉴定核心和辅助条件特异性必需基因。利用从未感染或预先免疫感染植物中获得的 Pst DC3000 基因表达数据来约束 iPst19 的代谢通量,揭示了植物免疫对细菌代谢的影响。机器学习分析表明,除其他氨基酸外,支链氨基酸(BCAAs)代谢对每个基因表达上下文化的 iPst19 模拟的整体代谢状态有显著贡献。这些预测得到了实验的验证和证实。Pst DC3000 的生长和基因表达分析表明,BCAAs 在不影响细菌生长的情况下体外抑制毒力基因表达。然而,在植物体内,BCAAs 的过量会在感染早期抑制毒力基因的表达,并显著损害拟南芥叶片的定植。我们的研究结果表明,BCAAs 的分解代谢对于表达毒力和定植宿主是必要的。总的来说,这项研究提供了有价值的见解,了解植物免疫如何影响 Pst DC3000 的代谢,以及细菌代谢如何影响毒力的表达。